Theory UML_Library

(*****************************************************************************
 * Featherweight-OCL --- A Formal Semantics for UML-OCL Version OCL 2.5
 *                       for the OMG Standard.
 *                       http://www.brucker.ch/projects/hol-testgen/
 *
 * UML_Library.thy --- Library definitions.
 * This file is part of HOL-TestGen.
 *
 * Copyright (c) 2012-2015 Université Paris-Saclay, Univ. Paris-Sud, France
 *               2013-2015 IRT SystemX, France
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *
 *     * Neither the name of the copyright holders nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 ******************************************************************************)


theory  UML_Library
imports (* Basic Type Operations *)
        "basic_types/UML_Boolean"
        "basic_types/UML_Void"
        "basic_types/UML_Integer"
        "basic_types/UML_Real"
        "basic_types/UML_String"
        
        (* Collection Type Operations *)
        "collection_types/UML_Pair"
        "collection_types/UML_Bag"
        "collection_types/UML_Set"
        "collection_types/UML_Sequence"
begin

section‹Miscellaneous Stuff›

subsection‹Definition: asBoolean›

definition OclAsBooleanInt  :: "('𝔄) Integer  ('𝔄) Boolean" ("(_)->oclAsTypeInt'(Boolean')")
where     "OclAsBooleanInt X = (λτ. if (δ X) τ = true τ 
                              then X τ  0
                              else invalid τ)"

interpretation OclAsBooleanInt : profile_monod OclAsBooleanInt "λx. x  0"
                                by unfold_locales (auto simp: OclAsBooleanInt_def bot_option_def)

definition OclAsBooleanReal  :: "('𝔄) Real  ('𝔄) Boolean" ("(_)->oclAsTypeReal'(Boolean')")
where     "OclAsBooleanReal X = (λτ. if (δ X) τ = true τ 
                              then X τ  0
                              else invalid τ)"

interpretation OclAsBooleanReal : profile_monod OclAsBooleanReal "λx. x  0"
                                 by unfold_locales (auto simp: OclAsBooleanReal_def bot_option_def)

subsection‹Definition: asInteger›

definition OclAsIntegerReal  :: "('𝔄) Real  ('𝔄) Integer" ("(_)->oclAsTypeReal'(Integer')")
where     "OclAsIntegerReal X = (λτ. if (δ X) τ = true τ 
                              then floor X τ
                              else invalid τ)"

interpretation OclAsIntegerReal : profile_monod OclAsIntegerReal "λx. floor x"
                                 by unfold_locales (auto simp: OclAsIntegerReal_def bot_option_def)

subsection‹Definition: asReal›

definition OclAsRealInt  :: "('𝔄) Integer  ('𝔄) Real" ("(_)->oclAsTypeInt'(Real')")
where     "OclAsRealInt X = (λτ. if (δ X) τ = true τ 
                              then real_of_int X τ
                              else invalid τ)"

interpretation OclAsRealInt : profile_monod OclAsRealInt "λx. real_of_int x"
                             by unfold_locales (auto simp: OclAsRealInt_def bot_option_def)

lemma Integer_subtype_of_Real: 
  assumes "τ  δ X"
  shows   "τ  X ->oclAsTypeInt(Real) ->oclAsTypeReal(Integer)  X"
  apply(insert assms,  simp add: OclAsIntegerReal_def OclAsRealInt_def OclValid_def StrongEq_def)
  apply(subst (2 4) cp_defined, simp add: true_def)
  by (metis assms bot_option_def drop.elims foundation16 null_option_def)

subsection‹Definition: asPair›

definition OclAsPairSeq   :: "[('𝔄,::null)Sequence]('𝔄,::null,::null) Pair" ("(_)->asPairSeq'(')")
where     "OclAsPairSeq S = (if S->sizeSeq()  𝟮
                            then Pair{S->atSeq(𝟬),S->atSeq(𝟭)}
                            else invalid
                            endif)"

definition OclAsPairSet   :: "[('𝔄,::null)Set]('𝔄,::null,::null) Pair" ("(_)->asPairSet'(')")
where     "OclAsPairSet S = (if S->sizeSet()  𝟮
                            then let v = S->anySet() in
                                 Pair{v,S->excludingSet(v)->anySet()}
                            else invalid
                            endif)"

definition OclAsPairBag   :: "[('𝔄,::null)Bag]('𝔄,::null,::null) Pair" ("(_)->asPairBag'(')")
where     "OclAsPairBag S = (if S->sizeBag()  𝟮
                            then let v = S->anyBag() in
                                 Pair{v,S->excludingBag(v)->anyBag()}
                            else invalid
                            endif)"

subsection‹Definition: asSet›

definition OclAsSetSeq   :: "[('𝔄,::null)Sequence]('𝔄,)Set" ("(_)->asSetSeq'(')")
where     "OclAsSetSeq S = (S->iterateSeq(b; x = Set{} | x ->includingSet(b)))"

definition OclAsSetPair   :: "[('𝔄,::null,::null) Pair]('𝔄,)Set" ("(_)->asSetPair'(')")
where     "OclAsSetPair S = Set{S .First(), S .Second()}"

definition OclAsSetBag   :: "('𝔄,::null) Bag('𝔄,)Set" ("(_)->asSetBag'(')")
where     "OclAsSetBag S =  (λ τ. if (δ S) τ = true τ 
                                 then Abs_Setbase Rep_Set_base S τ  
                                 else if (υ S) τ = true τ then null τ 
                                                          else invalid τ)"

subsection‹Definition: asSequence›

definition OclAsSeqSet   :: "[('𝔄,::null)Set]('𝔄,)Sequence" ("(_)->asSequenceSet'(')")
where     "OclAsSeqSet S = (S->iterateSet(b; x = Sequence{} | x ->includingSeq(b)))"

definition OclAsSeqBag   :: "[('𝔄,::null)Bag]('𝔄,)Sequence" ("(_)->asSequenceBag'(')")
where     "OclAsSeqBag S = (S->iterateBag(b; x = Sequence{} | x ->includingSeq(b)))"

definition OclAsSeqPair   :: "[('𝔄,::null,::null) Pair]('𝔄,)Sequence" ("(_)->asSequencePair'(')")
where     "OclAsSeqPair S = Sequence{S .First(), S .Second()}"

subsection‹Definition: asBag›

definition OclAsBagSeq   :: "[('𝔄,::null)Sequence]('𝔄,)Bag" ("(_)->asBagSeq'(')")
where     "OclAsBagSeq S = (λτ. Abs_Bagbase λs. if list_ex ((=) s) Rep_Sequencebase (S τ) then 1 else 0)"

definition OclAsBagSet   :: "[('𝔄,::null)Set]('𝔄,)Bag" ("(_)->asBagSet'(')")
where     "OclAsBagSet S = (λτ. Abs_Bagbase λs. if s  Rep_Setbase (S τ) then 1 else 0)"

lemma assumes "τ  δ (S ->sizeSet())" (* S is finite *)
      shows "OclAsBagSet S = (S->iterateSet(b; x = Bag{} | x ->includingBag(b)))"
oops

definition OclAsBagPair   :: "[('𝔄,::null,::null) Pair]('𝔄,)Bag" ("(_)->asBagPair'(')")
where     "OclAsBagPair S = Bag{S .First(), S .Second()}"

text_raw‹\isatagafp›
subsection‹Collection Types›
lemmas cp_intro'' [intro!,simp,code_unfold] =
       cp_intro'
     (*  cp_intro''Pair *)
       cp_intro''Set
       cp_intro''Seq
text_raw‹\endisatagafp›

subsection‹Test Statements›

lemma syntax_test: "Set{𝟮,𝟭} = (Set{}->includingSet(𝟭)->includingSet(𝟮))"
by (rule refl)

text‹Here is an example of a nested collection.›
lemma semantic_test2:
assumes H:"(Set{𝟮}  null) = (false::('𝔄)Boolean)"
shows   "(τ::('𝔄)st)  (Set{Set{𝟮},null}->includesSet(null))"
by(simp add: OclIncludes_executeSet H)



lemma short_cut'[simp,code_unfold]: "(𝟴  𝟲) = false"
 apply(rule ext)
 apply(simp add: StrictRefEqInteger StrongEq_def OclInt8_def OclInt6_def
                 true_def false_def invalid_def bot_option_def)
done

lemma short_cut''[simp,code_unfold]: "(𝟮  𝟭) = false"
 apply(rule ext)
 apply(simp add: StrictRefEqInteger StrongEq_def OclInt2_def OclInt1_def
                 true_def false_def invalid_def bot_option_def)
done
lemma short_cut'''[simp,code_unfold]: "(𝟭  𝟮) = false"
 apply(rule ext)
 apply(simp add: StrictRefEqInteger StrongEq_def OclInt2_def OclInt1_def
                 true_def false_def invalid_def bot_option_def)
done

Assert   "τ  (𝟬 <int 𝟮) and (𝟬 <int 𝟭) "


text‹Elementary computations on Sets.›

declare OclSelect_body_def [simp]

Assert "¬ (τ  υ(invalid::('𝔄,::null) Set))"
Assert    "τ  υ(null::('𝔄,::null) Set)"
Assert "¬ (τ  δ(null::('𝔄,::null) Set))"
Assert    "τ  υ(Set{})"
Assert    "τ  υ(Set{Set{𝟮},null})"
Assert    "τ  δ(Set{Set{𝟮},null})"
Assert    "τ  (Set{𝟮,𝟭}->includesSet(𝟭))"
Assert "¬ (τ  (Set{𝟮}->includesSet(𝟭)))"
Assert "¬ (τ  (Set{𝟮,𝟭}->includesSet(null)))"
Assert    "τ  (Set{𝟮,null}->includesSet(null))"
Assert    "τ  (Set{null,𝟮}->includesSet(null))"

Assert    "τ  ((Set{})->forAllSet(z | 𝟬 <int z))"

Assert    "τ  ((Set{𝟮,𝟭})->forAllSet(z | 𝟬 <int z))"
Assert "¬ (τ  ((Set{𝟮,𝟭})->existsSet(z | z <int 𝟬 )))"
Assert "¬ (τ  (δ(Set{𝟮,null})->forAllSet(z | 𝟬 <int z)))"
Assert "¬ (τ  ((Set{𝟮,null})->forAllSet(z | 𝟬 <int z)))"
Assert    "τ  ((Set{𝟮,null})->existsSet(z | 𝟬 <int z))"


Assert "¬ (τ  (Set{null::'a Boolean}  Set{}))"
Assert "¬ (τ  (Set{null::'a Integer}  Set{}))"

Assert "¬ (τ  (Set{true}  Set{false}))"
Assert "¬ (τ  (Set{true,true}  Set{false}))"
Assert "¬ (τ  (Set{𝟮}  Set{𝟭}))"
Assert    "τ  (Set{𝟮,null,𝟮}  Set{null,𝟮})"
Assert    "τ  (Set{𝟭,null,𝟮} <> Set{null,𝟮})"
Assert    "τ  (Set{Set{𝟮,null}}  Set{Set{null,𝟮}})"
Assert    "τ  (Set{Set{𝟮,null}} <> Set{Set{null,𝟮},null})"
Assert    "τ  (Set{null}->selectSet(x | not x)  Set{null})"
Assert    "τ  (Set{null}->rejectSet(x | not x)  Set{null})"

lemma     "const (Set{Set{𝟮,null}, invalid})" by(simp add: const_ss)


text‹Elementary computations on Sequences.›

Assert "¬ (τ  υ(invalid::('𝔄,::null) Sequence))"
Assert    "τ  υ(null::('𝔄,::null) Sequence)"
Assert "¬ (τ  δ(null::('𝔄,::null) Sequence))"
Assert    "τ  υ(Sequence{})"

lemma     "const (Sequence{Sequence{𝟮,null}, invalid})" by(simp add: const_ss)

end