Theory Regular_Tree_Relations.Tree_Automata_Pumping
theory Tree_Automata_Pumping
imports Tree_Automata
begin
subsection ‹Pumping lemma›
abbreviation "derivation_ctxt ts Cs ≡ Suc (length Cs) = length ts ∧
(∀ i < length Cs. (Cs ! i) ⟨ts ! i⟩ = ts ! Suc i)"
abbreviation "derivation_ctxt_st A ts Cs qs ≡ length qs = length ts ∧ Suc (length Cs) = length ts ∧
(∀ i < length Cs. qs ! Suc i |∈| ta_der A (Cs ! i)⟨Var (qs ! i)⟩)"
abbreviation "derivation_sound A ts qs ≡ length qs = length ts ∧
(∀ i < length qs. qs ! i |∈| ta_der A (ts ! i))"
definition "derivation A ts Cs qs ⟷ derivation_ctxt ts Cs ∧
derivation_ctxt_st A ts Cs qs ∧ derivation_sound A ts qs"
lemma ctxt_comp_lhs_not_hole:
assumes "C ≠ □"
shows "C ∘⇩c D ≠ □"
using assms by (cases C; cases D) auto
lemma ctxt_comp_rhs_not_hole:
assumes "D ≠ □"
shows "C ∘⇩c D ≠ □"
using assms by (cases C; cases D) auto
lemma fold_ctxt_comp_nt_empty_acc:
assumes "D ≠ □"
shows "fold (∘⇩c) Cs D ≠ □"
using assms by (induct Cs arbitrary: D) (auto simp add: ctxt_comp_rhs_not_hole)
lemma fold_ctxt_comp_nt_empty:
assumes "C ∈ set Cs" and "C ≠ □"
shows "fold (∘⇩c) Cs D ≠ □" using assms
by (induct Cs arbitrary: D) (auto simp: ctxt_comp_lhs_not_hole fold_ctxt_comp_nt_empty_acc)
lemma empty_ctxt_power [simp]:
"□ ^ n = □"
by (induct n) auto
lemma ctxt_comp_not_hole:
assumes "C ≠ □" and "n ≠ 0"
shows "C^n ≠ □"
using assms by (induct n arbitrary: C) (auto elim!: ctxt_compose.elims)
lemma ctxt_comp_n_suc [simp]:
shows "(C^(Suc n))⟨t⟩ = (C^n)⟨C⟨t⟩⟩"
by (induct n arbitrary: C) auto
lemma ctxt_comp_reach:
assumes "p |∈| ta_der A C⟨Var p⟩"
shows "p |∈| ta_der A (C^n)⟨Var p⟩"
using assms by (induct n arbitrary: C) (auto intro: ta_der_ctxt)
lemma args_depth_less [simp]:
assumes "u ∈ set ss"
shows "depth u < depth (Fun f ss)" using assms
by (cases ss) (auto simp: less_Suc_eq_le)
lemma subterm_depth_less:
assumes "s ⊳ t"
shows "depth t < depth s"
using assms by (induct s t rule: supt.induct) (auto intro: less_trans)
lemma poss_length_depth:
shows "∃ p ∈ poss t. length p = depth t"
proof (induct t)
case (Fun f ts)
then show ?case
proof (cases ts)
case [simp]: (Cons a list)
have "ts ≠ [] ⟹ ∃ s. f s = Max (f ` set ts) ∧ s ∈ set ts" for ts f
using Max_in[of "f ` set ts"] by (auto simp: image_iff)
from this[of ts depth] obtain s where s: "depth s = Max (depth ` set ts) ∧ s ∈ set ts"
by auto
then show ?thesis using Fun[of s] in_set_idx[OF conjunct2[OF s]]
by fastforce
qed auto
qed auto
lemma poss_length_bounded_by_depth:
assumes "p ∈ poss t"
shows "length p ≤ depth t" using assms
by (induct t arbitrary: p) (auto intro!: Suc_leI, meson args_depth_less dual_order.strict_trans2 nth_mem)
lemma depth_ctxt_nt_hole_inc:
assumes "C ≠ □"
shows "depth t < depth C⟨t⟩" using assms
using subterm_depth_less[of t "C⟨t⟩"]
by (simp add: nectxt_imp_supt_ctxt subterm_depth_less)
lemma depth_ctxt_less_eq:
"depth t ≤ depth C⟨t⟩" using depth_ctxt_nt_hole_inc less_imp_le
by (cases C, simp) blast
lemma ctxt_comp_n_not_hole_depth_inc:
assumes "C ≠ □"
shows "depth (C^n)⟨t⟩ < depth (C^(Suc n))⟨t⟩"
using assms by (induct n arbitrary: C t) (auto simp: ctxt_comp_not_hole depth_ctxt_nt_hole_inc)
lemma ctxt_comp_n_lower_bound:
assumes "C ≠ □"
shows "n < depth (C^(Suc n))⟨t⟩"
using assms
proof (induct n arbitrary: C)
case 0 then show ?case using ctxt_comp_not_hole depth_ctxt_nt_hole_inc gr_implies_not_zero by blast
next
case (Suc n) then show ?case using ctxt_comp_n_not_hole_depth_inc less_trans_Suc by blast
qed
lemma ta_der_ctxt_n_loop:
assumes "q |∈| ta_der 𝒜 t" "q |∈| ta_der 𝒜 C⟨Var q⟩"
shows " q |∈| ta_der 𝒜 (C^n)⟨t⟩"
using assms by (induct n) (auto simp: ta_der_ctxt)
lemma ctxt_compose_funs_ctxt [simp]:
"funs_ctxt (C ∘⇩c D) = funs_ctxt C ∪ funs_ctxt D"
by (induct C arbitrary: D) auto
lemma ctxt_compose_vars_ctxt [simp]:
"vars_ctxt (C ∘⇩c D) = vars_ctxt C ∪ vars_ctxt D"
by (induct C arbitrary: D) auto
lemma ctxt_power_funs_vars_0 [simp]:
assumes "n = 0"
shows "funs_ctxt (C^n) = {}" "vars_ctxt (C^n) = {}"
using assms by auto
lemma ctxt_power_funs_vars_n [simp]:
assumes "n ≠ 0"
shows "funs_ctxt (C^n) = funs_ctxt C" "vars_ctxt (C^n) = vars_ctxt C"
using assms by (induct n arbitrary: C, auto) fastforce+
fun terms_pos where
"terms_pos s [] = [s]"
| "terms_pos s (p # ps) = terms_pos (s |_ [p]) ps @ [s]"
lemma subt_at_poss [simp]:
assumes "a # p ∈ poss s"
shows "p ∈ poss (s |_ [a])"
using assms by (metis append_Cons append_self_conv2 poss_append_poss)
lemma terms_pos_length [simp]:
shows "length (terms_pos t p) = Suc (length p)"
by (induct p arbitrary: t) auto
lemma terms_pos_last [simp]:
assumes "i = length p"
shows "terms_pos t p ! i = t" using assms
by (induct p arbitrary: t) (auto simp add: append_Cons_nth_middle)
lemma terms_pos_subterm:
assumes "p ∈ poss t" and "s ∈ set (terms_pos t p)"
shows "t ⊵ s" using assms
using assms
proof (induct p arbitrary: t s)
case (Cons a p)
from Cons(2) have st: "t ⊵ t |_ [a]" by auto
from Cons(1)[of "t |_ [a]"] Cons(2-) show ?case
using supteq_trans[OF st] by fastforce
qed auto
lemma terms_pos_differ_subterm:
assumes "p ∈ poss t" and "i < length (terms_pos t p)"
and "j < length (terms_pos t p)" and "i < j"
shows "terms_pos t p ! i ⊲ terms_pos t p ! j"
using assms
proof (induct p arbitrary: t i j)
case (Cons a p)
from Cons(2-) have "t |_ [a] ⊵ terms_pos (t |_ [a]) p ! i"
by (intro terms_pos_subterm[of p]) auto
from subterm.order.strict_trans1[OF this, of t] Cons(1)[of "t |_ [a]" i j] Cons(2-) show ?case
by (cases "j = length (a # p)") (force simp add: append_Cons_nth_middle append_Cons_nth_left)+
qed auto
lemma distinct_terms_pos:
assumes "p ∈ poss t"
shows "distinct (terms_pos t p)" using assms
proof (induct p arbitrary: t)
case (Cons a p)
have "⋀i. i < Suc (length p) ⟹ t ⊳ (terms_pos (t |_ [a]) p) ! i"
using terms_pos_differ_subterm[OF Cons(2), of _ "Suc (length p)"] by (auto simp: nth_append)
then show ?case using Cons(1)[of "t |_ [a]"] Cons(2-)
by (auto simp: in_set_conv_nth) (metis supt_not_sym)
qed auto
lemma term_chain_depth:
assumes "depth t = n"
shows "∃ p ∈ poss t. length (terms_pos t p) = (n + 1)"
proof -
obtain p where p: "p ∈ poss t" "length p = depth t"
using poss_length_depth[of t] by blast
from terms_pos_length[of t p] this show ?thesis using assms
by auto
qed
lemma ta_der_derivation_chain_terms_pos_exist:
assumes "p ∈ poss t" and "q |∈| ta_der A t"
shows "∃ Cs qs. derivation A (terms_pos t p) Cs qs ∧ last qs = q"
using assms
proof (induct p arbitrary: t q)
case Nil
then show ?case by (auto simp: derivation_def intro!: exI[of _ "[q]"])
next
case (Cons a p)
from Cons(2) have poss: "p ∈ poss (t |_ [a])" by auto
from Cons(2) obtain C where C: "C⟨t |_ [a]⟩ = t"
using ctxt_at_pos_subt_at_id poss_Cons by blast
from C ta_der_ctxt_decompose Cons(3) obtain q' where
res: "q' |∈| ta_der A (t |_ [a])" "q |∈| ta_der A C⟨Var q'⟩"
by metis
from Cons(1)[OF _ res(1)] Cons(2-) C obtain Cs qs where
der: "derivation A (terms_pos (t |_ [a]) p) Cs qs ∧ last qs = q'"
by (auto simp del: terms_pos.simps)
{fix i assume "i < Suc (length Cs)"
then have "derivation_ctxt (terms_pos (t |_ [a]) p @ [t]) (Cs @ [C])"
using der C[symmetric] unfolding derivation_def
by (cases "i = length Cs") (auto simp: nth_append_Cons)}
note der_ctxt = this
{fix i assume "i < Suc (length Cs)"
then have "derivation_ctxt_st A (terms_pos (t |_ [a]) p @ [t]) (Cs @ [C]) (qs @ [q])"
using der poss C res(2) last_conv_nth[of qs]
by (cases "i = length Cs", auto 0 0 simp: derivation_def nth_append not_less less_Suc_eq) fastforce+}
then show ?case using C poss res(1) der_ctxt der
by (auto simp: derivation_def intro!: exI[of _ "Cs @ [C]"] exI[of _ "qs @ [q]"])
(simp add: Cons.prems(2) nth_append_Cons)
qed
lemma derivation_ctxt_terms_pos_nt_empty:
assumes "p ∈ poss t" and "derivation_ctxt (terms_pos t p) Cs" and "C ∈ set Cs"
shows "C ≠ □"
using assms by (auto simp: in_set_conv_nth)
(metis Suc_mono assms(2) ctxt_apply_term.simps(1) distinct_terms_pos lessI less_SucI less_irrefl_nat nth_eq_iff_index_eq)
lemma derivation_ctxt_terms_pos_sub_list_nt_empty:
assumes "p ∈ poss t" and "derivation_ctxt (terms_pos t p) Cs"
and "i < length Cs" and "j ≤ length Cs" and "i < j"
shows "fold (∘⇩c) (take (j - i) (drop i Cs)) □ ≠ □"
proof -
have "∃ C. C ∈ set (take (j - i) (drop i Cs))"
using assms(3-) not_le by fastforce
then obtain C where w: "C ∈ set (take (j - i) (drop i Cs))" by blast
then have "C ≠ □"
by auto (meson assms(1, 2) derivation_ctxt_terms_pos_nt_empty in_set_dropD in_set_takeD)
then show ?thesis by (auto simp: fold_ctxt_comp_nt_empty[OF w])
qed
lemma derivation_ctxt_comp_term:
assumes "derivation_ctxt ts Cs"
and "i < length Cs" and "j ≤ length Cs" and "i < j"
shows "(fold (∘⇩c) (take (j - i) (drop i Cs)) □)⟨ts ! i⟩ = ts ! j"
using assms
proof (induct "j - i" arbitrary: j i)
case (Suc x)
then obtain n where j [simp]: "j = Suc n" by (meson lessE)
then have r: "x = n - i" "Suc n - i = 1 + (n - i)" using Suc(2, 6) by linarith+
then show ?case using Suc(1)[OF r(1)] Suc(2-) unfolding j r(2) take_add[of "n - i" 1]
by (cases "i = n") (auto simp: take_Suc_conv_app_nth)
qed auto
lemma derivation_ctxt_comp_states:
assumes "derivation_ctxt_st A ts Cs qs"
and "i < length Cs" and "j ≤ length Cs" and "i < j"
shows "qs ! j |∈| ta_der A (fold (∘⇩c) (take (j - i) (drop i Cs)) □)⟨Var (qs ! i)⟩"
using assms
proof (induct "j - i" arbitrary: j i)
case (Suc x)
then obtain n where j [simp]: "j = Suc n" by (meson lessE)
then have r: "x = n - i" "Suc n - i = 1 + (n - i)" using Suc(2, 6) by linarith+
then show ?case using Suc(1)[OF r(1)] Suc(2-) unfolding j r(2) take_add[of "n - i" 1]
by (cases "i = n") (auto simp: take_Suc_conv_app_nth ta_der_ctxt)
qed auto
lemma terms_pos_ground:
assumes "ground t" and "p ∈ poss t"
shows "∀ s ∈ set (terms_pos t p). ground s"
using terms_pos_subterm[OF assms(2)] subterm_eq_pres_ground[OF assms(1)] by simp
lemma list_card_smaller_contains_eq_elemens:
assumes "length qs = n" and "card (set qs) < n"
shows "∃ i < length qs. ∃ j < length qs. i < j ∧ qs ! i = qs ! j"
using assms by auto (metis distinct_card distinct_conv_nth linorder_neqE_nat)
lemma length_remdups_less_eq:
assumes "set xs ⊆ set ys"
shows "length (remdups xs) ≤ length (remdups ys)" using assms
by (auto simp: length_remdups_card_conv card_mono)
lemma pigeonhole_tree_automata:
assumes "fcard (𝒬 A) < depth t" and "q |∈| ta_der A t" and "ground t"
shows "∃ C C2 v p. C2 ≠ □ ∧ C⟨C2⟨v⟩⟩ = t ∧ p |∈| ta_der A v ∧
p |∈| ta_der A C2⟨Var p⟩ ∧ q |∈| ta_der A C⟨Var p⟩"
proof -
obtain p n where p: "p ∈ poss t" "depth t = n" and
card: "fcard (𝒬 A) < n" "length (terms_pos t p) = (n + 1)"
using assms(1) term_chain_depth by blast
from ta_der_derivation_chain_terms_pos_exist[OF p(1) assms(2)] obtain Cs qs where
derivation: "derivation A (terms_pos t p) Cs qs ∧ last qs = q" by blast
then have d_ctxt: "derivation_ctxt_st A (terms_pos t p) Cs qs" "derivation_ctxt (terms_pos t p) Cs"
by (auto simp: derivation_def)
then have l: "length Cs = length qs - 1" by (auto simp: derivation_def)
from derivation have sub: "fset_of_list qs |⊆| 𝒬 A" "length qs = length (terms_pos t p)"
unfolding derivation_def
using ta_der_states[of A "t |_ i" for i] terms_pos_ground[OF assms(3) p(1)]
by auto (metis derivation derivation_def gterm_of_term_inv gterm_ta_der_states in_fset_conv_nth nth_mem)
then have "∃ i < length (butlast qs). ∃ j < length (butlast qs). i < j ∧ (butlast qs) ! i = (butlast qs) ! j"
using card(1, 2) assms(1) fcard_mono[OF sub(1)] length_remdups_less_eq[of "butlast qs" qs]
by (intro list_card_smaller_contains_eq_elemens[of "butlast qs" n])
(auto simp: card_set fcard_fset in_set_butlastD subsetI
intro!: le_less_trans[of "length (remdups (butlast qs))" "fcard (𝒬 A)" "length p"])
then obtain i j where len: "i < length Cs" "j < length Cs" and less: "i < j" and st: "qs ! i = qs ! j"
unfolding l length_butlast by (auto simp: nth_butlast)
then have gt_0: "0 < length Cs" and gt_j: "0 < j" using len less less_trans by auto
have "fold (∘⇩c) (take (j - i) (drop i Cs)) □ ≠ □"
using derivation_ctxt_terms_pos_sub_list_nt_empty[OF p(1) d_ctxt(2) len(1) order.strict_implies_order[OF len(2)] less] .
moreover have "(fold (∘⇩c) (take (length Cs - j) (drop j Cs)) □)⟨terms_pos t p ! j⟩ = terms_pos t p ! length Cs"
using derivation_ctxt_comp_term[OF d_ctxt(2) len(2) _ len(2)] len(2) by auto
moreover have "(fold (∘⇩c) (take (j - i) (drop i Cs)) □)⟨terms_pos t p ! i⟩ = terms_pos t p ! j"
using derivation_ctxt_comp_term[OF d_ctxt(2) len(1) _ less] len(2) by auto
moreover have "qs ! j |∈| ta_der A (terms_pos t p ! i)" using derivation len
by (auto simp: derivation_def st[symmetric])
moreover have "qs ! j |∈| ta_der A (fold (∘⇩c) (take (j - i) (drop i Cs)) □)⟨Var (qs ! i)⟩"
using derivation_ctxt_comp_states[OF d_ctxt(1) len(1) _ less] len(2) st by simp
moreover have "q |∈| ta_der A (fold (∘⇩c) (take (length Cs - j) (drop j Cs)) □)⟨Var (qs ! j)⟩"
using derivation_ctxt_comp_states[OF d_ctxt(1) len(2) _ len(2)] conjunct2[OF derivation]
by (auto simp: l sub(2)) (metis Suc_inject Zero_not_Suc d_ctxt(1) l last_conv_nth list.size(3) terms_pos_length)
ultimately show ?thesis using st d_ctxt(1) by (metis Suc_inject terms_pos_last terms_pos_length)
qed
end