Theory Cluster
theory Cluster
imports Mapping_Code
begin
lemma these_Un[simp]: "Option.these (A ∪ B) = Option.these A ∪ Option.these B"
by (auto simp: Option.these_def)
lemma these_insert[simp]: "Option.these (insert x A) = (case x of Some a ⇒ insert a | None ⇒ id) (Option.these A)"
by (auto simp: Option.these_def split: option.splits) force
lemma these_image_Un[simp]: "Option.these (f ` (A ∪ B)) = Option.these (f ` A) ∪ Option.these (f ` B)"
by (auto simp: Option.these_def)
lemma these_imageI: "f x = Some y ⟹ x ∈ X ⟹ y ∈ Option.these (f ` X)"
by (force simp: Option.these_def)
lift_definition cluster :: "('b ⇒ 'a option) ⇒ 'b set ⇒ ('a, 'b set) mapping" is
"λf Y x. if Some x ∈ f ` Y then Some {y ∈ Y. f y = Some x} else None" .
lemma set_of_idx_cluster: "set_of_idx (cluster (Some ∘ f) X) = X"
by transfer (auto simp: ran_def)
lemma lookup_cluster': "Mapping.lookup (cluster (Some ∘ h) X) y = (if y ∉ h ` X then None else Some {x ∈ X. h x = y})"
by transfer auto
context ord
begin
definition add_to_rbt :: "'a × 'b ⇒ ('a, 'b set) rbt ⇒ ('a, 'b set) rbt" where
"add_to_rbt = (λ(a, b) t. case rbt_lookup t a of Some X ⇒ rbt_insert a (insert b X) t | None ⇒ rbt_insert a {b} t)"
abbreviation "add_option_to_rbt f ≡ (λb _ t. case f b of Some a ⇒ add_to_rbt (a, b) t | None ⇒ t)"
definition cluster_rbt :: "('b ⇒ 'a option) ⇒ ('b, unit) rbt ⇒ ('a, 'b set) rbt" where
"cluster_rbt f t = RBT_Impl.fold (add_option_to_rbt f) t RBT_Impl.Empty"
end
context linorder
begin
lemma is_rbt_add_to_rbt: "is_rbt t ⟹ is_rbt (add_to_rbt ab t)"
by (auto simp: add_to_rbt_def split: prod.splits option.splits)
lemma is_rbt_fold_add_to_rbt: "is_rbt t' ⟹
is_rbt (RBT_Impl.fold (add_option_to_rbt f) t t')"
by (induction t arbitrary: t') (auto 0 0 simp: is_rbt_add_to_rbt split: option.splits)
lemma is_rbt_cluster_rbt: "is_rbt (cluster_rbt f t)"
using is_rbt_fold_add_to_rbt Empty_is_rbt
by (fastforce simp: cluster_rbt_def)
lemma rbt_insert_entries_None: "is_rbt t ⟹ rbt_lookup t k = None ⟹
set (RBT_Impl.entries (rbt_insert k v t)) = insert (k, v) (set (RBT_Impl.entries t))"
by (auto simp: rbt_lookup_in_tree[symmetric] rbt_lookup_rbt_insert split: if_splits)
lemma rbt_insert_entries_Some: "is_rbt t ⟹ rbt_lookup t k = Some v' ⟹
set (RBT_Impl.entries (rbt_insert k v t)) = insert (k, v) (set (RBT_Impl.entries t) - {(k, v')})"
by (auto simp: rbt_lookup_in_tree[symmetric] rbt_lookup_rbt_insert split: if_splits)
lemma keys_add_to_rbt: "is_rbt t ⟹ set (RBT_Impl.keys (add_to_rbt (a, b) t)) = insert a (set (RBT_Impl.keys t))"
by (auto simp: add_to_rbt_def RBT_Impl.keys_def rbt_insert_entries_None rbt_insert_entries_Some split: option.splits)
lemma keys_fold_add_to_rbt: "is_rbt t' ⟹ set (RBT_Impl.keys (RBT_Impl.fold (add_option_to_rbt f) t t')) =
Option.these (f ` set (RBT_Impl.keys t)) ∪ set (RBT_Impl.keys t')"
proof (induction t arbitrary: t')
case (Branch col t1 k v t2)
have valid: "is_rbt (RBT_Impl.fold (add_option_to_rbt f) t1 t')"
using Branch(3)
by (auto intro: is_rbt_fold_add_to_rbt)
show ?case
proof (cases "f k")
case None
show ?thesis
by (auto simp: None Branch(2)[OF valid] Branch(1)[OF Branch(3)])
next
case (Some a)
have valid': "is_rbt (add_to_rbt (a, k) (RBT_Impl.fold (add_option_to_rbt f) t1 t'))"
by (auto intro: is_rbt_add_to_rbt[OF valid])
show ?thesis
by (auto simp: Some Branch(2)[OF valid'] keys_add_to_rbt[OF valid] Branch(1)[OF Branch(3)])
qed
qed auto
lemma rbt_lookup_add_to_rbt: "is_rbt t ⟹ rbt_lookup (add_to_rbt (a, b) t) x = (if a = x then Some (case rbt_lookup t x of None ⇒ {b} | Some Y ⇒ insert b Y) else rbt_lookup t x)"
by (auto simp: add_to_rbt_def rbt_lookup_rbt_insert split: option.splits)
lemma rbt_lookup_fold_add_to_rbt: "is_rbt t' ⟹ rbt_lookup (RBT_Impl.fold (add_option_to_rbt f) t t') x =
(if x ∈ Option.these (f ` set (RBT_Impl.keys t)) ∪ set (RBT_Impl.keys t') then Some ({y ∈ set (RBT_Impl.keys t). f y = Some x}
∪ (case rbt_lookup t' x of None ⇒ {} | Some Y ⇒ Y)) else None)"
proof (induction t arbitrary: t')
case Empty
then show ?case
using rbt_lookup_iff_keys(2,3)[OF is_rbt_rbt_sorted]
by (fastforce split: option.splits)
next
case (Branch col t1 k v t2)
have valid: "is_rbt (RBT_Impl.fold (add_option_to_rbt f) t1 t')"
using Branch(3)
by (auto intro: is_rbt_fold_add_to_rbt)
show ?case
proof (cases "f k")
case None
have fold_set: "x ∈ Option.these (f ` set (RBT_Impl.keys t2)) ∪ ((Option.these (f ` set (RBT_Impl.keys t1)) ∪ set (RBT_Impl.keys t'))) ⟷
x ∈ Option.these (f ` set (RBT_Impl.keys (Branch col t1 k v t2))) ∪ set (RBT_Impl.keys t')"
by (auto simp: None)
show ?thesis
unfolding fold_simps comp_def None option.case(1) Branch(2)[OF valid] keys_add_to_rbt[OF valid] keys_fold_add_to_rbt[OF Branch(3)]
rbt_lookup_add_to_rbt[OF valid] Branch(1)[OF Branch(3)] fold_set
using rbt_lookup_iff_keys(2,3)[OF is_rbt_rbt_sorted[OF Branch(3)]]
by (auto simp: None split: option.splits) (auto dest: these_imageI)
next
case (Some a)
have valid': "is_rbt (add_to_rbt (a, k) (RBT_Impl.fold (add_option_to_rbt f) t1 t'))"
by (auto intro: is_rbt_add_to_rbt[OF valid])
have fold_set: "x ∈ Option.these (f ` set (RBT_Impl.keys t2)) ∪ (insert a (Option.these (f ` set (RBT_Impl.keys t1)) ∪ set (RBT_Impl.keys t'))) ⟷
x ∈ Option.these (f ` set (RBT_Impl.keys (Branch col t1 k v t2))) ∪ set (RBT_Impl.keys t')"
by (auto simp: Some)
have F1: "(case if P then Some X else None of None ⇒ {k} | Some Y ⇒ insert k Y) =
(if P then (insert k X) else {k})" for P X
by auto
have F2: "(case if a = x then Some X else if P then Some Y else None of None ⇒ {} | Some Y ⇒ Y) =
(if a = x then X else if P then Y else {})"
for P X and Y :: "'b set"
by auto
show ?thesis
unfolding fold_simps comp_def Some option.case(2) Branch(2)[OF valid'] keys_add_to_rbt[OF valid] keys_fold_add_to_rbt[OF Branch(3)]
rbt_lookup_add_to_rbt[OF valid] Branch(1)[OF Branch(3)] fold_set F1 F2
using rbt_lookup_iff_keys(2,3)[OF is_rbt_rbt_sorted[OF Branch(3)]]
by (auto simp: Some split: option.splits) (auto dest: these_imageI)
qed
qed
end
context
fixes c :: "'a comparator"
begin
definition add_to_rbt_comp :: "'a × 'b ⇒ ('a, 'b set) rbt ⇒ ('a, 'b set) rbt" where
"add_to_rbt_comp = (λ(a, b) t. case rbt_comp_lookup c t a of None ⇒ rbt_comp_insert c a {b} t
| Some X ⇒ rbt_comp_insert c a (insert b X) t)"
abbreviation "add_option_to_rbt_comp f ≡ (λb _ t. case f b of Some a ⇒ add_to_rbt_comp (a, b) t | None ⇒ t)"
definition cluster_rbt_comp :: "('b ⇒ 'a option) ⇒ ('b, unit) rbt ⇒ ('a, 'b set) rbt" where
"cluster_rbt_comp f t = RBT_Impl.fold (add_option_to_rbt_comp f) t RBT_Impl.Empty"
context
assumes c: "comparator c"
begin
lemma add_to_rbt_comp: "add_to_rbt_comp = ord.add_to_rbt (lt_of_comp c)"
unfolding add_to_rbt_comp_def ord.add_to_rbt_def rbt_comp_lookup[OF c] rbt_comp_insert[OF c]
by simp
lemma cluster_rbt_comp: "cluster_rbt_comp = ord.cluster_rbt (lt_of_comp c)"
unfolding cluster_rbt_comp_def ord.cluster_rbt_def add_to_rbt_comp
by simp
end
end
lift_definition mapping_of_cluster :: "('b ⇒ 'a :: ccompare option) ⇒ ('b, unit) rbt ⇒ ('a, 'b set) mapping_rbt" is
"cluster_rbt_comp ccomp"
using linorder.is_rbt_fold_add_to_rbt[OF comparator.linorder[OF ID_ccompare'] ord.Empty_is_rbt]
by (fastforce simp: cluster_rbt_comp[OF ID_ccompare'] ord.cluster_rbt_def)
lemma cluster_code[code]:
fixes f :: "'b :: ccompare ⇒ 'a :: ccompare option" and t :: "('b, unit) mapping_rbt"
shows "cluster f (RBT_set t) = (case ID CCOMPARE('a) of None ⇒
Code.abort (STR ''cluster: ccompare = None'') (λ_. cluster f (RBT_set t))
| Some c ⇒ (case ID CCOMPARE('b) of None ⇒
Code.abort (STR ''cluster: ccompare = None'') (λ_. cluster f (RBT_set t))
| Some c' ⇒ (RBT_Mapping (mapping_of_cluster f (RBT_Mapping2.impl_of t)))))"
proof -
{
fix c c'
assume assms: "ID ccompare = (Some c :: 'a comparator option)" "ID ccompare = (Some c' :: 'b comparator option)"
have c_def: "c = ccomp"
using assms(1)
by auto
have c'_def: "c' = ccomp"
using assms(2)
by auto
have c: "comparator (ccomp :: 'a comparator)"
using ID_ccompare'[OF assms(1)]
by (auto simp: c_def)
have c': "comparator (ccomp :: 'b comparator)"
using ID_ccompare'[OF assms(2)]
by (auto simp: c'_def)
note c_class = comparator.linorder[OF c]
note c'_class = comparator.linorder[OF c']
have rbt_lookup_cluster: "ord.rbt_lookup cless (cluster_rbt_comp ccomp f t) =
(λx. if x ∈ Option.these (f ` (set (RBT_Impl.keys t))) then Some {y ∈ (set (RBT_Impl.keys t)). f y = Some x} else None)"
if "ord.is_rbt cless (t :: ('b, unit) rbt) ∨ ID ccompare = (None :: 'b comparator option)" for t
proof -
have is_rbt_t: "ord.is_rbt cless t"
using assms that
by auto
show ?thesis
unfolding cluster_rbt_comp[OF c] ord.cluster_rbt_def linorder.rbt_lookup_fold_add_to_rbt[OF c_class ord.Empty_is_rbt]
by (auto simp: ord.rbt_lookup.simps split: option.splits)
qed
have dom_ord_rbt_lookup: "ord.is_rbt cless t ⟹ dom (ord.rbt_lookup cless t) = set (RBT_Impl.keys t)" for t :: "('b, unit) rbt"
using linorder.rbt_lookup_keys[OF c'_class] ord.is_rbt_def
by auto
have "cluster f (Collect (RBT_Set2.member t)) = Mapping (RBT_Mapping2.lookup (mapping_of_cluster f (mapping_rbt.impl_of t)))"
using assms(2)[unfolded c'_def]
by (transfer fixing: f) (auto simp: in_these_eq rbt_comp_lookup[OF c] rbt_comp_lookup[OF c'] rbt_lookup_cluster dom_ord_rbt_lookup)
}
then show ?thesis
unfolding RBT_set_def
by (auto split: option.splits)
qed
end