Theory Ailamazyan_Code
theory Ailamazyan_Code
imports "HOL-Library.Code_Target_Nat" "Containers.Containers" Ailamazyan
begin
definition insert_db :: "'a ⇒ 'b ⇒ ('a, 'b set) mapping ⇒ ('a, 'b set) mapping" where
"insert_db k v m = (case Mapping.lookup m k of None ⇒
Mapping.update k ({v}) m
| Some vs ⇒ Mapping.update k (({v} ∪ vs)) m)"
fun convert_db_rec :: "('a × 'c list) list ⇒ (('a × nat), 'c list set) mapping ⇒
(('a × nat), 'c list set) mapping" where
"convert_db_rec [] m = m"
| "convert_db_rec ((r, ts) # ktss) m = convert_db_rec ktss (insert_db (r, length ts) ts m)"
lemma convert_db_rec_mono: "Mapping.lookup m (r, n) = Some tss ⟹
∃tss'. Mapping.lookup (convert_db_rec ktss m) (r, n) = Some tss' ∧ tss ⊆ tss'"
apply (induction ktss m arbitrary: tss rule: convert_db_rec.induct)
apply (auto simp: insert_db_def fun_upd_def Mapping.lookup_update' split: option.splits if_splits)
apply (metis option.discI)
apply (smt option.inject order_trans subset_insertI)
done
lemma convert_db_rec_sound: "(r, ts) ∈ set ktss ⟹
∃tss. Mapping.lookup (convert_db_rec ktss m) (r, length ts) = Some tss ∧ ts ∈ tss"
proof (induction ktss m rule: convert_db_rec.induct)
case (2 r ts ktss m)
obtain tss where
"Mapping.lookup (convert_db_rec ktss (insert_db (r, length ts) ts m)) (r, length ts) = Some tss"
"ts ∈ tss"
using convert_db_rec_mono[of "insert_db (r, length ts) ts m" r "length ts" _ ktss]
by atomize_elim (auto simp: insert_db_def Mapping.lookup_update' split: option.splits)+
then show ?case
using 2
by auto
qed auto
lemma convert_db_rec_complete: "Mapping.lookup (convert_db_rec ktss m) (r, n) = Some tss' ⟹
ts ∈ tss' ⟹
(length ts = n ∧ (r, ts) ∈ set ktss) ∨ (∃tss. Mapping.lookup m (r, n) = Some tss ∧ ts ∈ tss)"
by (induction ktss m rule: convert_db_rec.induct)
(auto simp: insert_db_def Mapping.lookup_update' split: option.splits if_splits)
definition convert_db :: "('a × 'c list) list ⇒ ('c table, 'a) fo_intp" where
"convert_db ktss = (let m = convert_db_rec ktss Mapping.empty in
(λx. case Mapping.lookup m x of None ⇒ {} | Some v ⇒ v))"
lemma convert_db_correct: "(ts ∈ convert_db ktss (r, n) ⟶ n = length ts) ∧
((r, ts) ∈ set ktss ⟷ ts ∈ convert_db ktss (r, length ts))"
by (auto simp: convert_db_def dest!: convert_db_rec_sound[of _ _ _ Mapping.empty]
split: option.splits)
(metis Mapping.lookup_empty convert_db_rec_complete option.distinct(1))+
lemma Inl_vimage_set_code[code_unfold]: "Inl -` set as = set (List.map_filter (case_sum Some Map.empty) as)"
by (induction as) (auto simp: List.map_filter_simps split: option.splits sum.splits)
lemma Inr_vimage_set_code[code_unfold]: "Inr -` set as = set (List.map_filter (case_sum Map.empty Some) as)"
by (induction as) (auto simp: List.map_filter_simps split: option.splits sum.splits)
lemma Inl_vimage_code: "Inl -` as = projl ` {x ∈ as. isl x}"
by (force simp: vimage_def)
lemmas ad_pred_code[code] = ad_terms.simps[unfolded Inl_vimage_code]
lemmas fo_wf_code[code] = fo_wf.simps[unfolded Inl_vimage_code]
definition empty_J :: "((nat, nat) fo_t, String.literal) fo_intp" where
"empty_J = (λ(_, n). eval_pred (map Var [0..<n]) {})"
definition eval_fin_nat :: "(nat, String.literal) fo_fmla ⇒ (nat table, String.literal) fo_intp ⇒ nat eval_res" where
"eval_fin_nat φ I = eval φ I"
definition sat_fin_nat :: "(nat, String.literal) fo_fmla ⇒ (nat table, String.literal) fo_intp ⇒ nat val ⇒ bool" where
"sat_fin_nat φ I = sat φ I"
definition convert_nat_db :: "(String.literal × nat list) list ⇒
(nat table, String.literal) fo_intp" where
"convert_nat_db = convert_db"
definition rbt_nat_fold :: "_ ⇒ nat set_rbt ⇒ _ ⇒ _" where
"rbt_nat_fold = RBT_Set2.fold"
definition rbt_nat_list_fold :: "_ ⇒ (nat list) set_rbt ⇒ _ ⇒ _" where
"rbt_nat_list_fold = RBT_Set2.fold"
definition rbt_sum_list_fold :: "_ ⇒ ((nat + nat) list) set_rbt ⇒ _ ⇒ _" where
"rbt_sum_list_fold = RBT_Set2.fold"
export_code eval_fin_nat sat_fin_nat fv_fo_fmla_list convert_nat_db rbt_nat_fold rbt_nat_list_fold
rbt_sum_list_fold Const Conj Inl Fin nat_of_integer integer_of_nat RBT_set
in OCaml module_name Eval_FO file_prefix verified
definition φ :: "(nat, String.literal) fo_fmla" where
"φ ≡ Exists 0 (Conj (FO.Eqa (Var 0) (Const 2)) (FO.Eqa (Var 0) (Var 1)))"
value "eval_fin_nat φ (convert_nat_db [])"
value "sat_fin_nat φ (convert_nat_db []) (λ_. 0)"
value "sat_fin_nat φ (convert_nat_db []) (λ_. 2)"
definition ψ :: "(nat, String.literal) fo_fmla" where
"ψ ≡ Forall 2 (Disj (FO.Eqa (Var 2) (Const 42))
(Exists 1 (Conj (FO.Pred (String.implode ''P'') [Var 0, Var 1])
(Neg (FO.Pred (String.implode ''Q'') [Var 1, Var 2])))))"
value "eval_fin_nat ψ (convert_nat_db
[(String.implode ''P'', [1, 20]),
(String.implode ''P'', [9, 20]),
(String.implode ''P'', [2, 30]),
(String.implode ''P'', [3, 31]),
(String.implode ''P'', [4, 32]),
(String.implode ''P'', [5, 30]),
(String.implode ''P'', [6, 30]),
(String.implode ''P'', [7, 30]),
(String.implode ''Q'', [20, 42]),
(String.implode ''Q'', [30, 43])])"
end