Theory Dynamic_Architecture_Calculus

(*
  Title:      Dynamic_Architecture_Calculus
  Author:     Diego Marmsoler
*)
section "A Calculus for Dynamic Architectures"
text ‹
  The following theory formalizes our calculus for dynamic architectures~cite"Marmsoler2017b" and "Marmsoler2017c" and verifies its soundness.
  The calculus allows to reason about temporal-logic specifications of component behavior in a dynamic setting.
  The theory is based on our theory of configuration traces and introduces the notion of behavior trace assertion to specify component behavior in a dynamic setting.
›
theory Dynamic_Architecture_Calculus
  imports Configuration_Traces
begin

subsection "Extended Natural Numbers"
text ‹
  We first provide one additional property for extended natural numbers.
›

lemma the_enat_mono[simp]:
  assumes "m  "
    and "n  m"
  shows "the_enat n  the_enat m"
  using assms(1) assms(2) enat_ile by fastforce
    
subsection "Lazy Lists"
text ‹
  Finally, we provide an additional property for lazy lists.
›
  
lemma llength_geq_enat_lfiniteD: "llength xs  enat n  lfinite xs"
  using not_lfinite_llength by force

context dynamic_component
begin

subsection "Dynamic Evaluation of Temporal Operators"
text ‹
  In the following we introduce a function to evaluate a behavior trace assertion over a given configuration trace.
›
type_synonym 'c bta = "(nat  'c)  nat  bool"

definition eval:: "'id  (nat  cnf)  (nat  'cmp)  nat
   'cmp bta  bool"
  where "eval cid t t' n γ 
    (in. cid∥⇘t i)  γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) (the_enat(cid #⇘ninf_llist t)) 
    (i. cid∥⇘t i)  (i'. i'n  cid∥⇘t i')  γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) (cid⇙↓⇘t(n)) 
    (i. cid∥⇘t i)  γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) n"
text @{const eval} takes a component identifier @{term cid}, a configuration trace @{term t}, a behavior trace @{term t'}, and point in time @{term n} and evaluates behavior trace assertion @{term γ} as follows:
  \begin{itemize}
    \item If component @{term cid} is again activated in the future, @{term γ} is evaluated at the next point in time where @{term cid} is active in @{term t}.
    \item If component @{term cid} is not again activated in the future but it is activated at least once in @{term t}, then @{term γ} is evaluated at the point in time given by @{term "(cid⇙↓⇘t(n))"}.
    \item If component @{term cid} is never active in @{term t}, then @{term γ} is evaluated at time point @{term n}.
  \end{itemize}
›
  
text ‹
  The following proposition evaluates definition @{const eval} by showing that a behavior trace assertion @{term γ} holds over configuration trace @{term t} and continuation @{term t'} whenever it holds for the concatenation of the corresponding projection with @{term t'}.
›
proposition eval_corr:
  "eval cid t t' 0 γ  γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) 0"
proof
  assume "eval cid t t' 0 γ"
  with eval_def have "(i0. cid∥⇘t i) 
  γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat 0inf_llist t) 
  (i. cid∥⇘t i)  ¬ (i'0. cid∥⇘t i')  γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘t0) 
  (i. cid∥⇘t i)  γ (lnth (π⇘cidinf_llist t @l inf_llist t')) 0" by simp
  thus "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) 0"
  proof
    assume "(i0. cid∥⇘t i)  γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat 0inf_llist t)"
    moreover have "the_enat cid #⇘enat 0inf_llist t = 0" using zero_enat_def by auto
    ultimately show ?thesis by simp
  next
    assume "(i. cid∥⇘t i)  ¬ (i'0. cid∥⇘t i')  γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘t0) 
    (i. cid∥⇘t i)  γ (lnth (π⇘cidinf_llist t @l inf_llist t')) 0"
    thus ?thesis by auto
  qed
next
  assume "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) 0"
  show "eval cid t t' 0 γ"
  proof cases
    assume "i. cid∥⇘t i⇙"
    hence "i0. cid∥⇘t i⇙" by simp
    moreover from γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) 0 have
      "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) (the_enat(cid #⇘enat 0inf_llist t))"
      using zero_enat_def by auto
    ultimately show ?thesis using eval_def by simp
  next
    assume "i. cid∥⇘t i⇙"
    with γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) 0 show ?thesis using eval_def by simp
  qed
qed

subsubsection "Simplification Rules"

lemma validCI_act[simp]:
  assumes "in. cid∥⇘t i⇙"
    and "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) (the_enat(cid #⇘ninf_llist t))"
  shows "eval cid t t' n γ"
  using assms eval_def by simp

lemma validCI_cont[simp]:
  assumes "i. cid∥⇘t i⇙"
    and "i'. i'n  cid∥⇘t i'⇙"
    and "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) (cid⇙↓⇘t(n))"
  shows "eval cid t t' n γ"
  using assms eval_def by simp

lemma validCI_not_act[simp]:
  assumes "i. cid∥⇘t i⇙"
    and "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) n"
  shows "eval cid t t' n γ"
  using assms eval_def by simp

lemma validCE_act[simp]:
  assumes "in. cid∥⇘t i⇙"
    and "eval cid t t' n γ"
  shows "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) (the_enat(cid #⇘ninf_llist t))"
  using assms eval_def by auto
    
lemma validCE_cont[simp]:
  assumes "i. cid∥⇘t i⇙"
    and "i'. i'n  cid∥⇘t i'⇙"
    and "eval cid t t' n γ"
  shows "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) (cid⇙↓⇘t(n))"
  using assms eval_def by auto

lemma validCE_not_act[simp]:
  assumes "i. cid∥⇘t i⇙"
    and "eval cid t t' n γ"
  shows "γ (lnth ((π⇘cid(inf_llist t)) @l (inf_llist t'))) n"
  using assms eval_def by auto
    
subsubsection "No Activations"

proposition validity1:
  assumes "nn'"
    and "in'. c∥⇘t i⇙"
    and "kn. k<n'  ¬ c∥⇘t k⇙"
  shows "eval c t t' n γ  eval c t t' n' γ"
proof -
  assume "eval c t t' n γ"
  moreover from assms have "in. c∥⇘t i⇙" by (meson order.trans)
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat ninf_llist t))"
    using validCE_act by blast
  moreover have "enat n' - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
  with assms have "the_enat (c #⇘enat ninf_llist t) = the_enat (c #⇘enat n'inf_llist t)"
    using nAct_not_active_same[of n n' "inf_llist t" c] by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat n'inf_llist t))"
    by simp     
  with assms show ?thesis using validCI_act by blast
qed
  
proposition validity2:
  assumes "nn'"
    and "in'. c∥⇘t i⇙"
    and "kn. k<n'  ¬ c∥⇘t k⇙"
  shows "eval c t t' n' γ  eval c t t' n γ"
proof -
  assume "eval c t t' n' γ"
  with in'. c∥⇘t i⇙›
    have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat n'inf_llist t))"
    using validCE_act by blast
  moreover have "enat n' - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
  with assms have "the_enat (c #⇘enat ninf_llist t) = the_enat (c #⇘enat n'inf_llist t)"
    using nAct_not_active_same by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat ninf_llist t))"
    by simp     
  moreover from assms have "in. c∥⇘t i⇙" by (meson order.trans)      
  ultimately show ?thesis using validCI_act by blast
qed
  
subsection "Specification Operators"
text ‹
  In the following we introduce some basic operators for behavior trace assertions.
›

subsubsection "Predicates"
text ‹
  Every predicate can be transformed to a behavior trace assertion.
›

definition pred :: "bool  ('cmp bta)"
  where "pred P  λ t n. P"

lemma predI[intro]:
  fixes cid t t' n P
  assumes "P"
  shows "eval cid t t' n (pred P)"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    with assms show ?thesis using eval_def pred_def by auto
  next
    assume "¬ (in. cid∥⇘t i)"
    with assms show ?thesis using eval_def pred_def by auto
  qed
next
  assume "¬(i. cid∥⇘t i)"
  with assms show ?thesis using eval_def pred_def by auto
qed    
    
lemma predE[elim]:
  fixes cid t t' n P
  assumes "eval cid t t' n (pred P)"
  shows "P"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    with assms show ?thesis using eval_def pred_def by auto
  next
    assume "¬ (in. cid∥⇘t i)"
    with assms show ?thesis using eval_def pred_def by auto
  qed
next
  assume "¬(i. cid∥⇘t i)"
  with assms show ?thesis using eval_def pred_def by auto
qed

subsubsection "True and False"

abbreviation true :: "'cmp bta"
  where "true  λt n. HOL.True"
    
abbreviation false :: "'cmp bta"
  where "false  λt n. HOL.False"

subsubsection "Implication"  
  
definition imp :: "('cmp bta)  ('cmp bta)  ('cmp bta)" (infixl "b" 10)
  where "γ b γ'  λ t n. γ t n  γ' t n"

lemma impI[intro!]:
  assumes "eval cid t t' n γ  eval cid t t' n γ'"
  shows "eval cid t t' n (γ b γ')"
proof cases
  assume "i. cid∥⇘t i⇙"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    with eval cid t t' n γ  eval cid t t' n γ'
      have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using eval_def by blast
    with in. cid∥⇘t i⇙› have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using validCI_act[where γ="λ t n. γ t n  γ' t n"] by blast
    thus ?thesis using imp_def by simp
  next
    assume "¬ (in. cid∥⇘t i)"
    with i. cid∥⇘t i⇙› eval cid t t' n γ  eval cid t t' n γ'
      have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)" using eval_def by blast
    with i. cid∥⇘t i⇙› ¬ (in. cid∥⇘t i) have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using validCI_cont[where γ="λ t n. γ t n  γ' t n"] by blast
    thus ?thesis using imp_def by simp
  qed
next
  assume "¬(i. cid∥⇘t i)"
  with eval cid t t' n γ  eval cid t t' n γ'
    have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) n  γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using eval_def by blast
  with ¬(i. cid∥⇘t i) have "eval cid t t' n (λt n. γ t n  γ' t n)"
    using validCI_not_act[where γ="λ t n. γ t n  γ' t n"] by blast
  thus ?thesis using imp_def by simp    
qed
    
lemma impE[elim!]:
  assumes "eval cid t t' n (γ b γ')"
  shows "eval cid t t' n γ  eval cid t t' n γ'"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using imp_def by simp
    ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using validCE_act[where γ="λ t n. γ t n  γ' t n"] by blast
    with in. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  next
    assume "¬ (in. cid∥⇘t i)"
    moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using imp_def by simp
    ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)"
      using validCE_cont[where γ="λ t n. γ t n  γ' t n"] i. cid∥⇘t i⇙› by blast
    with ¬ (in. cid∥⇘t i) i. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  qed
next
  assume "¬(i. cid∥⇘t i)"
  moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
    using imp_def by simp
  ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) n
     γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using validCE_not_act[where γ="λ t n. γ t n  γ' t n"] by blast
  with ¬(i. cid∥⇘t i) show ?thesis using eval_def by blast
qed

subsubsection "Disjunction"  
    
definition disj :: "('cmp bta)  ('cmp bta)  ('cmp bta)" (infixl "b" 15)
  where "γ b γ'  λ t n. γ t n  γ' t n"

lemma disjI[intro!]:
  assumes "eval cid t t' n γ  eval cid t t' n γ'"
  shows "eval cid t t' n (γ b γ')"
  using assms disj_def eval_def by auto
    
lemma disjE[elim!]:
  assumes "eval cid t t' n (γ b γ')"
  shows "eval cid t t' n γ  eval cid t t' n γ'"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using disj_def by simp
    ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using validCE_act[where γ="λ t n. γ t n  γ' t n"] by blast
    with in. cid∥⇘t i⇙› show ?thesis
      using validCI_act[of n cid t γ t'] validCI_act[of n cid t γ' t'] by blast
  next
    assume "¬ (in. cid∥⇘t i)"
    moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using disj_def by simp
    ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)"
      using validCE_cont[where γ="λ t n. γ t n  γ' t n"] i. cid∥⇘t i⇙› by blast
    with ¬ (in. cid∥⇘t i) i. cid∥⇘t i⇙› show ?thesis
      using validCI_cont[of cid t n γ t'] validCI_cont[of cid t n γ' t'] by blast
  qed
next
  assume "¬(i. cid∥⇘t i)"
  moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
    using disj_def by simp
  ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) n
     γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using validCE_not_act[where γ="λ t n. γ t n  γ' t n"] by blast
  with ¬(i. cid∥⇘t i) show ?thesis
    using validCI_not_act[of cid t γ t' n] validCI_not_act[of cid t γ' t' n] by blast
qed

subsubsection "Conjunction"
  
definition conj :: "('cmp bta)  ('cmp bta)  ('cmp bta)" (infixl "b" 20)
  where "γ b γ'  λ t n. γ t n  γ' t n"

lemma conjI[intro!]:
  assumes "eval cid t t' n γ  eval cid t t' n γ'"
  shows "eval cid t t' n (γ b γ')"
proof cases
  assume "i. cid∥⇘t i⇙"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    with eval cid t t' n γ  eval cid t t' n γ'
      have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using eval_def by blast
    with in. cid∥⇘t i⇙› have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using validCI_act[where γ="λ t n. γ t n  γ' t n"] by blast
    thus ?thesis using conj_def by simp
  next
    assume "¬ (in. cid∥⇘t i)"
    with i. cid∥⇘t i⇙› eval cid t t' n γ  eval cid t t' n γ'
      have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)" using eval_def by blast
    with i. cid∥⇘t i⇙› ¬ (in. cid∥⇘t i) have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using validCI_cont[where γ="λ t n. γ t n  γ' t n"] by blast
    thus ?thesis using conj_def by simp
  qed
next
  assume "¬(i. cid∥⇘t i)"
  with eval cid t t' n γ  eval cid t t' n γ' have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) n
     γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) n" using eval_def by blast
  with ¬(i. cid∥⇘t i) have "eval cid t t' n (λt n. γ t n  γ' t n)"
    using validCI_not_act[where γ="λ t n. γ t n  γ' t n"] by blast
  thus ?thesis using conj_def by simp    
qed
    
lemma conjE[elim!]:
  assumes "eval cid t t' n (γ b γ')"
  shows "eval cid t t' n γ  eval cid t t' n γ'"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using conj_def by simp
    ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using validCE_act[where γ="λ t n. γ t n  γ' t n"] by blast
    with in. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  next
    assume "¬ (in. cid∥⇘t i)"
    moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
      using conj_def by simp
    ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)
       γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)"
      using validCE_cont[where γ="λ t n. γ t n  γ' t n"] i. cid∥⇘t i⇙› by blast
    with ¬ (in. cid∥⇘t i) i. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  qed
next
  assume "¬(i. cid∥⇘t i)"
  moreover from eval cid t t' n (γ b γ') have "eval cid t t' n (λt n. γ t n  γ' t n)"
    using conj_def by simp
  ultimately have "γ (lnth (π⇘cidinf_llist t @l inf_llist t')) n  γ' (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using validCE_not_act[where γ="λ t n. γ t n  γ' t n"] by blast
  with ¬(i. cid∥⇘t i) show ?thesis using eval_def by blast
qed

subsubsection "Negation"
  
definition neg :: "('cmp bta)  ('cmp bta)" ("¬b _" [19] 19)
  where "¬b γ  λ t n. ¬ γ t n"
    
lemma negI[intro!]:
  assumes "¬ eval cid t t' n γ"
  shows "eval cid t t' n (¬b γ)"
proof cases
  assume "i. cid∥⇘t i⇙"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    with ¬ eval cid t t' n γ
      have "¬ γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using eval_def by blast
    with in. cid∥⇘t i⇙› have "eval cid t t' n (λt n. ¬ γ t n)"
      using validCI_act[where γ="λ t n. ¬ γ t n"] by blast
    thus ?thesis using neg_def by simp
  next
    assume "¬ (in. cid∥⇘t i)"
    with i. cid∥⇘t i⇙› ¬ eval cid t t' n γ
      have "¬ γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)" using eval_def by blast
    with i. cid∥⇘t i⇙› ¬ (in. cid∥⇘t i) have "eval cid t t' n (λt n. ¬ γ t n)"
      using validCI_cont[where γ="λ t n. ¬ γ t n"] by blast
    thus ?thesis using neg_def by simp
  qed
next
  assume "¬(i. cid∥⇘t i)"
  with ¬ eval cid t t' n γ have "¬ γ (lnth (π⇘cidinf_llist t @l inf_llist t')) n" using eval_def by blast
  with ¬(i. cid∥⇘t i) have "eval cid t t' n (λt n. ¬ γ t n)"
    using validCI_not_act[where γ="λ t n. ¬ γ t n"] by blast
  thus ?thesis using neg_def by simp    
qed   

lemma negE[elim!]:
  assumes "eval cid t t' n (¬b γ)"
  shows "¬ eval cid t t' n γ"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    moreover from eval cid t t' n (¬b γ) have "eval cid t t' n (λt n. ¬ γ t n)" using neg_def by simp
    ultimately have "¬ γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using validCE_act[where γ="λ t n. ¬ γ t n"] by blast
    with in. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  next
    assume "¬ (in. cid∥⇘t i)"
    moreover from eval cid t t' n (¬b γ) have "eval cid t t' n (λt n. ¬ γ t n)" using neg_def by simp
    ultimately have "¬ γ (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)"
      using validCE_cont[where γ="λ t n. ¬ γ t n"] i. cid∥⇘t i⇙› by blast
    with ¬ (in. cid∥⇘t i) i. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  qed
next
  assume "¬(i. cid∥⇘t i)"
  moreover from eval cid t t' n (¬b γ) have "eval cid t t' n (λt n. ¬ γ t n)" using neg_def by simp
  ultimately have "¬ γ (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using validCE_not_act[where γ="λ t n. ¬ γ t n"] by blast
  with ¬(i. cid∥⇘t i) show ?thesis using eval_def by blast
qed

subsubsection "Quantifiers"

definition all :: "('a  ('cmp bta))
   ('cmp bta)" (binder "b" 10)
  where "all P  λt n. (y. (P y t n))"

lemma allI[intro!]:
  assumes "p. eval cid t t' n (γ p)"
  shows "eval cid t t' n (all (λp. γ p))"
proof cases
  assume "i. cid∥⇘t i⇙"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    with p. eval cid t t' n (γ p)
    have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using eval_def by blast
    with in. cid∥⇘t i⇙› have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using validCI_act[where γ="λt n. (y. (γ y t n))"] by blast
    thus ?thesis using all_def[of γ] by auto
  next
    assume "¬ (in. cid∥⇘t i)"
    with i. cid∥⇘t i⇙› p. eval cid t t' n (γ p)
      have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)"
      using eval_def by blast
    with i. cid∥⇘t i⇙› ¬ (in. cid∥⇘t i) have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using validCI_cont[where γ="λt n. (y. (γ y t n))"] by blast
    thus ?thesis using all_def[of γ] by auto
  qed
next
  assume "¬(i. cid∥⇘t i)"
  with p. eval cid t t' n (γ p) have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using eval_def by blast
  with ¬(i. cid∥⇘t i) have "eval cid t t' n (λt n. (y. (γ y t n)))"
    using validCI_not_act[where γ="λt n. (y. (γ y t n))"] by blast
  thus ?thesis using all_def[of γ] by auto
qed
  
lemma allE[elim!]:
  assumes "eval cid t t' n (all (λp. γ p))"
  shows "p. eval cid t t' n (γ p)"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    moreover from eval cid t t' n (all (λp. γ p)) have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using all_def[of γ] by auto
    ultimately have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using validCE_act[where γ="λt n. (y. (γ y t n))"] by blast
    with in. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  next
    assume "¬ (in. cid∥⇘t i)"
    moreover from eval cid t t' n (all (λp. γ p)) have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using all_def[of γ] by auto
    ultimately have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)"
      using validCE_cont[where γ="λt n. (y. (γ y t n))"] i. cid∥⇘t i⇙› by blast
    with ¬ (in. cid∥⇘t i) i. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  qed
next
  assume "¬(i. cid∥⇘t i)"
  moreover from eval cid t t' n (all (λp. γ p)) have "eval cid t t' n (λt n. (y. (γ y t n)))"
    using all_def[of γ] by auto
  ultimately have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using validCE_not_act[where γ="λt n. (y. (γ y t n))"] by blast
  with ¬(i. cid∥⇘t i) show ?thesis using eval_def by blast
qed
  
definition ex :: "('a  ('cmp bta))
   ('cmp bta)" (binder "b" 10)
  where "ex P  λt n. (y. (P y t n))"
    
lemma exI[intro!]:
  assumes "p. eval cid t t' n (γ p)"
  shows "eval cid t t' n (bp. γ p)"
proof cases
  assume "i. cid∥⇘t i⇙"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    with p. eval cid t t' n (γ p)
      have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using eval_def by blast
    with in. cid∥⇘t i⇙› have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using validCI_act[where γ="λt n. (y. (γ y t n))"] by blast
    thus ?thesis using ex_def[of γ] by auto
  next
    assume "¬ (in. cid∥⇘t i)"
    with i. cid∥⇘t i⇙› p. eval cid t t' n (γ p)
      have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)" using eval_def by blast
    with i. cid∥⇘t i⇙› ¬ (in. cid∥⇘t i) have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using validCI_cont[where γ="λt n. (y. (γ y t n))"] by blast
    thus ?thesis using ex_def[of γ] by auto
  qed
next
  assume "¬(i. cid∥⇘t i)"
  with p. eval cid t t' n (γ p) have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using eval_def by blast
  with ¬(i. cid∥⇘t i) have "eval cid t t' n (λt n. (y. (γ y t n)))"
    using validCI_not_act[where γ="λt n. (y. (γ y t n))"] by blast
  thus ?thesis using ex_def[of γ] by auto
qed
  
lemma exE[elim!]:
  assumes "eval cid t t' n (bp. γ p)"
  shows "p. eval cid t t' n (γ p)"
proof cases
  assume "(i. cid∥⇘t i)"
  show ?thesis
  proof cases
    assume "in. cid∥⇘t i⇙"
    moreover from eval cid t t' n (ex (λp. γ p)) have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using ex_def[of γ] by auto
    ultimately have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (the_enat cid #⇘enat ninf_llist t)"
      using validCE_act[where γ="λt n. (y. (γ y t n))"] by blast
    with in. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  next
    assume "¬ (in. cid∥⇘t i)"
    moreover from eval cid t t' n (bp. γ p) have "eval cid t t' n (λt n. (y. (γ y t n)))"
      using ex_def[of γ] by auto
    ultimately have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) (cid⇙↓⇘tn)"
      using validCE_cont[where γ="λt n. (y. (γ y t n))"] i. cid∥⇘t i⇙› by blast
    with ¬ (in. cid∥⇘t i) i. cid∥⇘t i⇙› show ?thesis using eval_def by blast
  qed
next
  assume "¬(i. cid∥⇘t i)"
  moreover from eval cid t t' n (bp. γ p) have "eval cid t t' n (λt n. (y. (γ y t n)))"
    using ex_def[of γ] by auto
  ultimately have "p. (γ p) (lnth (π⇘cidinf_llist t @l inf_llist t')) n"
    using validCE_not_act[where γ="λt n. (y. (γ y t n))"] by blast
  with ¬(i. cid∥⇘t i) show ?thesis using eval_def by blast
qed    
    
subsubsection "Behavior Assertions"
text ‹
  First we provide rules for basic behavior assertions.
›

definition ba :: "('cmp  bool)  ('cmp bta)" ("[_]b")
  where "ba φ  λ t n. φ (t n)"
  
lemma baIA[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
  assumes "in. c∥⇘t i⇙"
    and "φ (σ⇘c(t c  t⟩⇘n))"
  shows "eval c t t' n (ba φ)"
proof -
  from assms have "φ (σ⇘c(t c  t⟩⇘n))" by simp
  moreover have "σ⇘c(t c  t⟩⇘n) = lnth (π⇘c(inf_llist t)) (the_enat (c #⇘c  t⟩⇘n⇙⇙ inf_llist t))"
  proof -
    have "enat (Suc c  t⟩⇘n) < llength (inf_llist t)" using enat_ord_code by simp
    moreover from assms have "c∥⇘t (c  t⟩⇘n)⇙" using nxtActI by simp
    hence "c∥⇘lnth (inf_llist t) c  t⟩⇘n⇙⇙" by simp
    ultimately show ?thesis using proj_active_nth by simp
  qed
  ultimately have "φ (lnth (π⇘c(inf_llist t)) (the_enat(c #⇘c  t⟩⇘n⇙⇙ inf_llist t)))" by simp
  moreover have "c #⇘ninf_llist t = c #⇘c  t⟩⇘n⇙⇙ inf_llist t"
  proof -
    from assms have "k. nk  k<c  t⟩⇘n c∥⇘t k⇙" using nxtActI by simp
    hence "¬ (kn. k < c  t⟩⇘n c∥⇘lnth (inf_llist t) k)" by simp
    moreover have "enat c  t⟩⇘n- 1 < llength (inf_llist t)" by (simp add: one_enat_def)
    moreover from assms have "c  t⟩⇘nn" using nxtActI by simp
    ultimately show ?thesis using nAct_not_active_same[of n "c  t⟩⇘n⇙" "inf_llist t" c] by simp
  qed
  ultimately have "φ (lnth (π⇘c(inf_llist t)) (the_enat(c #⇘ninf_llist t)))" by simp
  moreover have "enat (the_enat (c #⇘enat ninf_llist t)) < llength (π⇘c(inf_llist t))"
  proof -
    have "ltake  (inf_llist t) = (inf_llist t)" using ltake_all[of "inf_llist t"] by simp
    hence "llength (π⇘c(inf_llist t)) = c #⇘inf_llist t" using nAct_def by simp
    moreover have "c #⇘enat ninf_llist t < c #⇘inf_llist t"
    proof -
      have "enat c  t⟩⇘n< llength (inf_llist t)" by simp
      moreover from assms have "c  t⟩⇘nn" and "c∥⇘t (c  t⟩⇘n)⇙" using nxtActI by auto
      ultimately show ?thesis using nAct_less[of "c  t⟩⇘n⇙" "inf_llist t" n ] by simp
    qed
    ultimately show ?thesis by simp
  qed
  hence "lnth (π⇘c(inf_llist t)) (the_enat (c #⇘ninf_llist t)) =
    lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (the_enat (c #⇘ninf_llist t))"
    using lnth_lappend1[of "the_enat (c #⇘enat ninf_llist t)" "π⇘c(inf_llist t)" "inf_llist t'"] by simp
  ultimately have "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (the_enat(c #⇘ninf_llist t)))" by simp
  hence "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (the_enat (c #⇘ninf_llist t)))" by simp
  moreover from assms have "c  t⟩⇘nn" and "c∥⇘t (c  t⟩⇘n)⇙" using nxtActI by auto
  ultimately have "(isnd (t, n). c∥⇘fst (t, n) i) 
    φ (lnth ((π⇘c(inf_llist (fst (t, n)))) @l (inf_llist t'))
    (the_enat (c #⇘the_enat (snd (t,n))inf_llist (fst (t, n)))))" by auto
  thus ?thesis using ba_def by simp
qed

lemma baIN1[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes act: "i. c∥⇘t i⇙"
    and nAct: "i. in  c∥⇘t i⇙"
    and al: "φ (t' (n - c  t - 1))"
  shows "eval c t t' n (ba φ)"
proof -
  have "t' (n - c  t - 1) = lnth (inf_llist t') (n - c  t - 1)" by simp
  moreover have " = lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (c⇙↓⇘t(n))"
    using act nAct cnf2bhv_lnth_lappend by simp
  ultimately have "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (c⇙↓⇘t(n)))" using al by simp
  with act nAct show ?thesis using ba_def by simp
qed    
    
lemma baIN2[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes nAct: "i. c∥⇘t i⇙"
    and al: "φ (t' n)"
  shows "eval c t t' n (ba φ)"
proof -
  have "t' n = lnth (inf_llist t') n" by simp
  moreover have " = lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) n"
  proof -
    from nAct have "π⇘c(inf_llist t) = []l" by simp
    hence "(π⇘c(inf_llist t)) @l (inf_llist t') = inf_llist t'" by (simp add: ‹π⇘cinf_llist t = []l)
    thus ?thesis by simp
  qed
  ultimately have "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) n)" using al by simp
  hence "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) n)" by simp
  with nAct show ?thesis using ba_def by simp
qed
  
lemma baIANow[intro]:
  fixes t n c φ
  assumes "φ (σ⇘c(t n))"
    and "c∥⇘t n⇙"
  shows "eval c t t' n (ba φ)"
proof -
  from assms have "φ(σ⇘c(t c  t⟩⇘n))" using nxtAct_active by simp
  with assms show ?thesis using baIA by blast
qed
  
lemma baEA[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and i::nat    
  assumes "in. c∥⇘t i⇙"
    and "eval c t t' n (ba φ)"
  shows "φ (σ⇘c(t c  t⟩⇘n))"
proof -
  from eval c t t' n (ba φ) have "eval c t t' n (λ t n. φ (t n))" using ba_def by simp
  moreover from assms have "c  t⟩⇘nn" and "c∥⇘t (c  t⟩⇘n)⇙" using nxtActI[of n c t] by auto
  ultimately have "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (the_enat (c #⇘ninf_llist t)))"
    using validCE_act by blast
  hence "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (the_enat (c #⇘ninf_llist t)))" by simp
  moreover have "enat (the_enat (c #⇘enat ninf_llist t)) < llength (π⇘c(inf_llist t))"
  proof -
    have "ltake  (inf_llist t) = (inf_llist t)" using ltake_all[of "inf_llist t"] by simp
    hence "llength (π⇘c(inf_llist t)) = c #⇘inf_llist t" using nAct_def by simp
    moreover have "c #⇘enat ninf_llist t < c #⇘inf_llist t"
    proof -
      have "enat c  t⟩⇘n< llength (inf_llist t)" by simp
      with c  t⟩⇘nn c∥⇘t c  t⟩⇘n⇙⇙› show ?thesis using nAct_less by simp
    qed
    ultimately show ?thesis by simp
  qed
  hence "lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (the_enat (c #⇘ninf_llist t)) =
    lnth (π⇘c(inf_llist t)) (the_enat (c #⇘ninf_llist t))"
    using lnth_lappend1[of "the_enat (c #⇘enat ninf_llist t)" "π⇘c(inf_llist t)" "inf_llist t'"] by simp
  ultimately have "φ (lnth (π⇘c(inf_llist t)) (the_enat (c #⇘ninf_llist t)))" by simp
  moreover have "c #⇘ninf_llist t = c #⇘c  t⟩⇘n⇙⇙ inf_llist t"
  proof -
    from assms have "k. nk  k<c  t⟩⇘n c∥⇘t k⇙" using nxtActI[of n c t] by auto
    hence "¬ (kn. k < c  t⟩⇘n c∥⇘lnth (inf_llist t) k)" by simp
    moreover have "enat c  t⟩⇘n- 1 < llength (inf_llist t)" by (simp add: one_enat_def)
    ultimately show ?thesis using c  t⟩⇘nn nAct_not_active_same by simp
  qed      
  moreover have "σ⇘c(t c  t⟩⇘n) = lnth (π⇘c(inf_llist t)) (the_enat (c #⇘c  t⟩⇘n⇙⇙ inf_llist t))"
  proof -
    have "enat (Suc i) < llength (inf_llist t)" using enat_ord_code by simp
    moreover from c∥⇘t c  t⟩⇘n⇙⇙› have "c∥⇘lnth (inf_llist t) c  t⟩⇘n⇙⇙" by simp
    ultimately show ?thesis using proj_active_nth by simp
  qed
  ultimately show ?thesis by simp
qed

lemma baEN1[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes act: "i. c∥⇘t i⇙"
    and nAct: "i. in  c∥⇘t i⇙"
    and al: "eval c t t' n (ba φ)"
  shows "φ (t' (n - c  t - 1))"
proof -
  from al have "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (c⇙↓⇘t(n)))"
    using act nAct validCE_cont ba_def by metis
  hence "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (c⇙↓⇘t(n)))" by simp
  moreover have "lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) (c⇙↓⇘t(n)) = lnth (inf_llist t') (n - c  t - 1)"
    using act nAct cnf2bhv_lnth_lappend by simp
  moreover have " = t' (n - c  t - 1)" by simp
  ultimately show ?thesis by simp
qed

lemma baEN2[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes nAct: "i. c∥⇘t i⇙"
    and al: "eval c t t' n (ba φ)"
  shows "φ (t' n)"
proof -
  from al have "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) n)"
    using nAct validCE_not_act ba_def by metis
  hence "φ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) n)" by simp
  moreover have "lnth ((π⇘c(inf_llist t)) @l (inf_llist t')) n = lnth (inf_llist t') n"
  proof -
    from nAct have "π⇘c(inf_llist t) = []l" by simp
    hence "(π⇘c(inf_llist t)) @l (inf_llist t') = inf_llist t'" by (simp add: ‹π⇘cinf_llist t = []l)
    thus ?thesis by simp
  qed
  moreover have " = t' n" by simp
  ultimately show ?thesis by simp
qed

lemma baEANow[elim]:
  fixes t n c φ
  assumes "eval c t t' n (ba φ)"
    and "c∥⇘t n⇙"
  shows "φ (σ⇘c(t n))"
proof -
  from assms have "φ(σ⇘c(t c  t⟩⇘n))" using baEA by blast
  with assms show ?thesis using nxtAct_active by simp
qed
    
subsubsection "Next Operator"

definition nxt :: "('cmp bta)  ('cmp bta)" ("b(_)" 24)
  where "b(γ)  λ t n. γ t (Suc n)"

lemma nxtIA[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
  assumes "in. c∥⇘t i⇙"
    and "i>c  t⟩⇘n. c∥⇘t i  n'  n. (∃!i. ni  i<n'  c∥⇘t i)  eval c t t' n' γ"
    and "¬(i>c  t⟩⇘n. c∥⇘t i)  eval c t t' (Suc c  t⟩⇘n) γ"    
  shows "eval c t t' n (b(γ))"
proof (cases)
  assume "i>c  t⟩⇘n. c∥⇘t i⇙"
  with assms(2) obtain n' where "n'n" and "∃!i. ni  i<n'  c∥⇘t i⇙" and "eval c t t' n' γ" by blast
  moreover from assms(1) have "c∥⇘t c  t⟩⇘n⇙⇙" and "c  t⟩⇘nn" using nxtActI by auto
  ultimately have "i'n'. c∥⇘t i'⇙" by (metis i>c  t⟩⇘n. c∥⇘t i⇙› dual_order.strict_trans2 leI nat_less_le)
  with eval c t t' n' γ
  have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat n'inf_llist t))"
    using validCE_act by blast
  moreover have "the_enat(c #⇘n'inf_llist t) = Suc (the_enat (c #⇘ninf_llist t))"
  proof -
    from ∃!i. ni  i<n'  c∥⇘t i⇙› obtain i where "ni" and "i<n'" and "c∥⇘t i⇙"
      and "i'. ni'  i'<n'  c∥⇘t i' i'=i" by blast
    moreover have "n' - 1 < llength (inf_llist t)" by simp            
    ultimately have "the_enat(c #⇘n'inf_llist t) = the_enat(eSuc (c #⇘ninf_llist t))"
      using nAct_active_suc[of "inf_llist t" n' n i c]  by (simp add: n  i)
    moreover have "c #⇘iinf_llist t  " by simp
    ultimately show ?thesis using the_enat_eSuc by simp
  qed    
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (Suc (the_enat (c #⇘ninf_llist t)))"
    by simp
  with assms have "eval c t t' n (λt n. γ t (Suc n))"
    using validCI_act[of n c t "λt n. γ t (Suc n)" t'] by blast
  thus ?thesis using nxt_def by simp
next
  assume "¬ (i>c  t⟩⇘n. c∥⇘t i)"
  with assms(3) have "eval c t t' (Suc c  t⟩⇘n) γ" by simp
  moreover from ¬ (i>c  t⟩⇘n. c∥⇘t i) have "¬ (iSuc c  t⟩⇘n. c∥⇘t i)" by simp
  ultimately have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) (c⇙↓⇘t(Suc c  t⟩⇘n))"
    using assms(1) validCE_cont[of c t "Suc c  t⟩⇘n⇙" t' γ] by blast
  moreover from assms(1) ¬ (i>c  t⟩⇘n. c∥⇘t i)
    have "Suc (the_enat c #⇘enat ninf_llist t) =c⇙↓⇘t(Suc c  t⟩⇘n)"
    using nAct_cnf2proj_Suc_dist by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (Suc (the_enat (c #⇘ninf_llist t)))"
    by simp
  moreover from assms(1) have "c∥⇘t c  t⟩⇘n⇙⇙" and "c  t⟩⇘n n" using nxtActI by auto
  ultimately have "eval c t t' n (λt n. γ t (Suc n))" using validCI_act[of n c t "λt n. γ t (Suc n)" t']
    by blast
  with c∥⇘t c  t⟩⇘n⇙⇙› ¬ (i'Suc c  t⟩⇘n. c∥⇘t i') show ?thesis using nxt_def by simp
qed
  
lemma nxtIN[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes "¬(in. c∥⇘t i)"
    and "eval c t t' (Suc n) γ"
  shows "eval c t t' n (b(γ))"
proof cases
  assume "i. c∥⇘t i⇙"
  moreover from ¬ (in. c∥⇘t i) have "¬ (iSuc n. c∥⇘t i)" by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(Suc n))"
    using validCE_cont eval c t t' (Suc n) γ by blast
  with i. c∥⇘t i⇙› have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (Suc (c⇙↓⇘t(n)))"
    using ¬(in. c∥⇘t i) lActive_less by auto
  with ¬(in. c∥⇘t i) i. c∥⇘t i⇙› have "eval c t t' n (λt n. γ t (Suc n))"
    using validCI_cont[where γ="(λt n. γ t (Suc n))"] by simp
  thus ?thesis using nxt_def by simp
next
  assume "¬(i. c∥⇘t i)"
  with assms have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) (Suc n)" using validCE_not_act by blast
  with ¬(i. c∥⇘t i) have "eval c t t' n (λt n. γ t (Suc n))"
    using validCI_not_act[where γ="(λt n. γ t (Suc n))"] by blast
  thus ?thesis using nxt_def by simp
qed
  
lemma nxtEA1[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
  assumes "i>c  t⟩⇘n. c∥⇘t i⇙"
    and "eval c t t' n (b(γ))"
    and "n'n"
    and "∃!i. in  i<n'  c∥⇘t i⇙"
  shows "eval c t t' n' γ"
proof -
  from eval c t t' n (b(γ)) have "eval c t t' n (λt n. γ t (Suc n))" using nxt_def by simp
  moreover from assms(4) obtain i where "in" and "i<n'" and "c∥⇘t i⇙"
    and "i'. ni'  i'<n'  c∥⇘t i' i'=i" by blast
  ultimately have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) (Suc (the_enat c #⇘enat ninf_llist t))"
    using validCE_act[of n c t t' "λt n. γ t (Suc n)"] by blast
  moreover have "the_enat(c #⇘n'inf_llist t) = Suc (the_enat (c #⇘ninf_llist t))"
  proof -
    have "n' - 1 < llength (inf_llist t)" by simp            
    with i<n' and c∥⇘t i⇙› and i'. ni'  i'<n'  c∥⇘t i' i'=i
      have "the_enat(c #⇘n'inf_llist t) = the_enat(eSuc (c #⇘ninf_llist t))"
      using nAct_active_suc[of "inf_llist t" n' n i c]  by (simp add: n  i)
    moreover have "c #⇘iinf_llist t  " by simp
    ultimately show ?thesis using the_enat_eSuc by simp
  qed    
  ultimately have "γ (lnth ((π⇘cinf_llist t) @l inf_llist t')) (the_enat (c #⇘n'inf_llist t))" by simp
  moreover have "i'n'. c∥⇘t i'⇙"
  proof -
    from assms(4) have "c  t⟩⇘nn" and "c∥⇘t c  t⟩⇘n⇙⇙" using nxtActI by auto
    with i'. ni'  i'<n'  c∥⇘t i' i'=i show ?thesis
      using assms(1) by (metis leI le_trans less_le)
  qed
  ultimately show ?thesis using validCI_act by blast
qed
  
lemma nxtEA2[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and "i"
  assumes "in. c∥⇘t i⇙" and "¬(i>c  t⟩⇘n. c∥⇘t i)"
    and "eval c t t' n (b(γ))"
  shows "eval c t t' (Suc c  t⟩⇘n) γ"
proof -
  from eval c t t' n (b(γ)) have "eval c t t' n (λt n. γ t (Suc n))" using nxt_def by simp
  with assms(1) have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) (Suc (the_enat c #⇘enat ninf_llist t))"
    using validCE_act[of n c t t' "λt n. γ t (Suc n)"] by blast
  moreover from assms(1) assms(2) have "Suc (the_enat c #⇘enat ninf_llist t)=c⇙↓⇘t(Suc c  t⟩⇘n)"
    using nAct_cnf2proj_Suc_dist by simp
  ultimately have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) (c⇙↓⇘t(Suc c  t⟩⇘n))" by simp
  moreover from assms(1) assms(2) have "¬(i'Suc c  t⟩⇘n. c∥⇘t i')"
    using nxtActive_no_active by simp
  ultimately show ?thesis using validCI_cont[where n="Suc c  t⟩⇘n⇙"] assms(1) by blast
qed

lemma nxtEN[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat 
  assumes "¬(in. c∥⇘t i)"
    and "eval c t t' n (b(γ))"
  shows "eval c t t' (Suc n) γ"
proof cases
  assume "i. c∥⇘t i⇙"
  moreover from eval c t t' n (b(γ)) have "eval c t t' n (λt n. γ t (Suc n))" using nxt_def by simp
  ultimately have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) (Suc (c⇙↓⇘tn))"
    using ¬(in. c∥⇘t i) validCE_cont[where γ="(λt n. γ t (Suc n))"] by simp
  hence "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(Suc n))"
    using i. c∥⇘t i⇙› assms(1) lActive_less by auto
  moreover from ¬ (in. c∥⇘t i) have "¬ (iSuc n. c∥⇘t i)" by simp      
  ultimately show ?thesis using validCI_cont[where n="Suc n"] i. c∥⇘t i⇙› by blast
next
  assume "¬(i. c∥⇘t i)"
  moreover from eval c t t' n (b(γ)) have "eval c t t' n (λt n. γ t (Suc n))" using nxt_def by simp
  ultimately have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) (Suc n)"
    using ¬(i. c∥⇘t i) validCE_not_act[where γ="(λt n. γ t (Suc n))"] by blast
  with ¬(i. c∥⇘t i) show ?thesis using validCI_not_act[of c t γ t' "Suc n"] by blast
qed

subsubsection "Eventually Operator"  

definition evt :: "('cmp bta)  ('cmp bta)" ("b(_)" 23)
  where "b(γ)  λ t n. n'n. γ t n'"

lemma evtIA[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and n'::nat
  assumes "in. c∥⇘t i⇙"
    and "n'c  t⟩⇘n⇙"
    and "in'. c∥⇘t i  n''c  t⟩⇘n'. n'' c  t⟩⇘n' eval c t t' n'' γ"
    and "¬(in'. c∥⇘t i)  eval c t t' n' γ"    
  shows "eval c t t' n (b(γ))"
proof cases  assume "i'n'. c∥⇘t i'⇙"
  with assms(3) obtain n'' where "n'' c  t⟩⇘n'⇙" and "n'' c  t⟩⇘n'⇙" and "eval c t t' n'' γ" by auto
  hence "i'n''. c∥⇘t i'⇙" using i'n'. c∥⇘t i'⇙› nxtActI by blast
  with eval c t t' n'' γ have
    "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n''inf_llist t))"
    using validCE_act by blast
  moreover have "the_enat (c #⇘ninf_llist t)  the_enat (c #⇘n''inf_llist t)"
  proof -
    from c  t⟩⇘n'n'' have "c #⇘n'inf_llist t  c #⇘n''inf_llist t"
      using nAct_mono_lNact by simp
    moreover from n'c  t⟩⇘n⇙› have "c #⇘ninf_llist t  c #⇘n'inf_llist t"
      using nAct_mono_lNact by simp
    moreover have "c #⇘n'inf_llist t  " by simp
    ultimately show ?thesis by simp
  qed
  moreover have "i'n. c∥⇘t i'⇙"
  proof -
    from i'n'. c∥⇘t i'⇙› obtain i' where "i'n'" and "c∥⇘t i'⇙" by blast
    with n'c  t⟩⇘n⇙› have "i' n" using lNactGe le_trans by blast
    with c∥⇘t i'⇙› show ?thesis by blast
  qed
  ultimately have "eval c t t' n (λt n. n'n. γ t n')"
    using validCI_act[where γ="(λt n. n'n. γ t n')"] by blast
  thus ?thesis using evt_def by simp
next
  assume "¬(i'n'. c∥⇘t i')"
  with (in. c∥⇘t i) have "n'  c  t" using lActive_less by auto
  hence "⇘c⇙↓⇘t(n')  the_enat (llength (π⇘c(inf_llist t))) - 1" using cnf2bhv_ge_llength by simp
  moreover have "the_enat(llength (π⇘c(inf_llist t))) - 1  the_enat(c #⇘ninf_llist t)"
  proof -
    from in. c∥⇘t i⇙› have "llength (π⇘c(inf_llist t))  eSuc (c #⇘ninf_llist t)"
      using nAct_llength_proj by simp
    moreover from ¬(i'n'. c∥⇘t i') have "lfinite (π⇘c(inf_llist t))"
      using proj_finite2[of "inf_llist t"] by simp
    hence "llength (π⇘c(inf_llist t))" using llength_eq_infty_conv_lfinite by auto
    ultimately have "the_enat (llength (π⇘c(inf_llist t)))  the_enat(eSuc (c #⇘ninf_llist t))"
      by simp
    moreover have "c #⇘ninf_llist t" by simp
    ultimately have "the_enat (llength (π⇘c(inf_llist t)))  Suc (the_enat (c #⇘ninf_llist t))"
      using the_enat_eSuc by simp
    thus ?thesis by simp
  qed
  ultimately have "⇘c⇙↓⇘t(n')  the_enat (c #⇘ninf_llist t)" by simp   
  moreover from ¬(i'n'. c∥⇘t i') have "eval c t t' n' γ" using assms(4) by simp
    with in. c∥⇘t i⇙› ¬(i'n'. c∥⇘t i')
    have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n'))" using validCE_cont by blast
  ultimately have "eval c t t' n (λt n. n'n. γ t n')"
    using in. c∥⇘t i⇙› validCI_act[where γ="(λt n. n'n. γ t n')"] by blast
  thus ?thesis using evt_def by simp
qed
    
lemma evtIN[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and n'::nat
  assumes "¬(in. c∥⇘t i)"
    and "n'n"
    and "eval c t t' n' γ"
  shows "eval c t t' n (b(γ))"
proof cases
  assume "i. c∥⇘t i⇙"
  moreover from assms(1) assms(2) have "¬(i'n'. c∥⇘t i')" by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n'))"
    using validCE_cont[of c t n' t' γ] eval c t t' n' γ by blast
  moreover from n'n have "⇘c⇙↓⇘t(n') c⇙↓⇘t(n)" using cnf2bhv_mono by simp
  ultimately have "eval c t t' n (λt n. n'n. γ t n')"
    using validCI_cont[where γ="(λt n. n'n. γ t n')"] i. c∥⇘t i⇙› ¬(in. c∥⇘t i) by blast
  thus ?thesis using evt_def by simp
next
  assume "¬(i. c∥⇘t i)"
  with assms have "γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'" using validCE_not_act by blast
  with ¬(i. c∥⇘t i) have "eval c t t' n (λt n. n'n. γ t n')"
    using validCI_not_act[where γ="λt n. n'n. γ t n'"] n'n by blast
  thus ?thesis using evt_def by simp
qed
  
lemma evtEA[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes "in. c∥⇘t i⇙"
    and "eval c t t' n (b(γ))"
  shows "n'c  t⟩⇘n.
          (in'. c∥⇘t i (n'' c  t⟩⇘n'. n''c  t⟩⇘n' eval c t t' n'' γ)) 
          (¬(in'. c∥⇘t i)  eval c t t' n' γ)"
proof -
  from eval c t t' n (b(γ)) have "eval c t t' n (λt n. n'n. γ t n')" using evt_def by simp
  with in. c∥⇘t i⇙›
    have "n'the_enat c #⇘enat ninf_llist t. γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'"
    using validCE_act[where γ="λt n. n'n. γ t n'"] by blast
  then obtain x where "xthe_enat (c #⇘ninf_llist t)" and
    "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x" by auto
  thus ?thesis
  proof (cases)
    assume "x  llength (π⇘c(inf_llist t))"
    moreover from (x  llength (π⇘c(inf_llist t))) have "llength (π⇘c(inf_llist t))"
      by (metis infinity_ileE)
    moreover from in. c∥⇘t i⇙› have "llength (π⇘c(inf_llist t))1"
      using proj_one[of "inf_llist t"] by auto
    ultimately have "the_enat (llength (π⇘c(inf_llist t))) - 1 < x"
      by (metis One_nat_def Suc_ile_eq antisym_conv2 diff_Suc_less enat_ord_simps(2)
          enat_the_enat less_imp_diff_less one_enat_def)
    hence "x =c⇙↓⇘t(c⇙↑⇘t(x))" using cnf2bhv_bhv2cnf by simp
    with γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x
      have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))" by simp
    moreover have "¬(ic⇙↑⇘t(x). c∥⇘t i)"
    proof -
      from x  llength (π⇘c(inf_llist t)) have "lfinite (π⇘c(inf_llist t))"
        using llength_geq_enat_lfiniteD[of "π⇘c(inf_llist t)" x] by simp
      then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
      moreover from the_enat (llength (π⇘c(inf_llist t))) - 1 < x have "c  t <c⇙↑⇘t(x)"
        using bhv2cnf_greater_lActive by simp
      ultimately show ?thesis using lActive_greater_active_all by simp
    qed
    ultimately have "eval c t t' (c⇙↑⇘tx) γ"
      using in. c∥⇘t i⇙› validCI_cont[of c t "⇘c⇙↑⇘t(x)"] by blast
    moreover have "⇘c⇙↑⇘t(x)  c  t⟩⇘n⇙"
    proof -
      from x  llength (π⇘c(inf_llist t)) have "lfinite (π⇘c(inf_llist t))"
        using llength_geq_enat_lfiniteD[of "π⇘c(inf_llist t)" x] by simp
      then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
      moreover from in. c∥⇘t i⇙› have "c∥⇘t c  t⟩⇘n⇙⇙" using nxtActI by simp
      ultimately have "c  tc  t⟩⇘n⇙" using lActive_greatest by fastforce
      moreover have "⇘c⇙↑⇘t(x)  c  t" by simp
      ultimately show "⇘c⇙↑⇘t(x)  c  t⟩⇘n⇙" by arith
    qed
    ultimately show ?thesis using ¬(ic⇙↑⇘t(x). c∥⇘t i) by blast
  next
    assume "¬(x  llength (π⇘c(inf_llist t)))"
    hence "x<llength (π⇘c(inf_llist t))" by simp
    then obtain n'::nat where "x=c #⇘n'inf_llist t" using nAct_exists by blast
    with enat x < llength (π⇘c(inf_llist t)) have "in'. c∥⇘t i⇙" using nAct_less_llength_active by force
    then obtain i where "in'" and "c∥⇘t i⇙" and "¬ (kn'. k < i  c∥⇘t k)" using nact_exists by blast
    moreover have "(n'' c  t⟩⇘i. n''c  t⟩⇘i eval c t t' n'' γ)"
    proof
      fix n'' show "c  t⟩⇘i n''  n''  c  t⟩⇘i eval c t t' n'' γ"
      proof(rule HOL.impI[OF HOL.impI])
        assume "c  t⟩⇘i n''" and "n''  c  t⟩⇘i⇙"
        hence "the_enat (c #⇘enat iinf_llist t) = the_enat (c #⇘enat n''inf_llist t)"
          using nAct_same by simp
        moreover from c∥⇘t i⇙› have "c∥⇘t c  t⟩⇘i⇙⇙" using nxtActI by auto
        with n''  c  t⟩⇘i⇙› have "in''. c∥⇘t i⇙" using dual_order.strict_implies_order by auto
        moreover have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat iinf_llist t))"
        proof -
          have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
          with x=c #⇘n'inf_llist t in' ¬ (kn'. k < i  c∥⇘t k) have "x=c #⇘iinf_llist t"
            using one_enat_def nAct_not_active_same by simp
          moreover have "c #⇘iinf_llist t" by simp
          ultimately have "x=the_enat(c #⇘iinf_llist t)" by fastforce        
          thus ?thesis using γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x by blast
        qed
        with the_enat (c #⇘enat iinf_llist t) = the_enat (c #⇘enat n''inf_llist t) have
          "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat n''inf_llist t))" by simp
        ultimately show "eval c t t' n'' γ" using validCI_act by blast
      qed
    qed
    moreover have "ic  t⟩⇘n⇙"
    proof -
      have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
      with x=c #⇘n'inf_llist t in' ¬ (kn'. k < i  c∥⇘t k) have "x=c #⇘iinf_llist t"
        using one_enat_def nAct_not_active_same by simp
      moreover have "c #⇘iinf_llist t" by simp
      ultimately have "x=the_enat(c #⇘iinf_llist t)" by fastforce        
      with xthe_enat (c #⇘ninf_llist t)
        have "the_enat (c #⇘iinf_llist t)the_enat (c #⇘ninf_llist t)" by simp
      with c∥⇘t i⇙› show ?thesis using active_geq_nxtAct by simp
    qed
    ultimately show ?thesis using c∥⇘t i⇙› by auto
  qed    
qed
    
lemma evtEN[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and n'::nat  
  assumes "¬(in. c∥⇘t i)"
    and "eval c t t' n (b(γ))"
  shows "n'n. eval c t t' n' γ" 
proof cases
  assume "i. c∥⇘t i⇙"
  moreover from eval c t t' n (b(γ)) have "eval c t t' n (λt n. n'n. γ t n')" using evt_def by simp
  ultimately have "n'c⇙↓⇘tn. γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'"
    using validCE_cont[where γ="(λt n. n'n. γ t n')"] ¬(in. c∥⇘t i) by blast
  then obtain x where "xc⇙↓⇘t(n)" and " γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x" by auto
  moreover have "the_enat (llength (π⇘c(inf_llist t))) - 1 < x"
  proof -
    have "c  t < n"
    proof (rule ccontr)
      assume "¬c  t < n"
      hence "c  t  n" by simp
      moreover from i. c∥⇘t i⇙› ¬ (in. c∥⇘t i) have "c∥⇘t c  t⇙"
        using lActive_active less_or_eq_imp_le by blast
      ultimately show False using ¬ (in. c∥⇘t i) by simp
    qed
    hence "the_enat (llength (π⇘c(inf_llist t))) - 1 <c⇙↓⇘t(n)" using cnf2bhv_greater_llength by simp
    with xc⇙↓⇘t(n) show ?thesis by simp
  qed
  hence "x =c⇙↓⇘t(c⇙↑⇘t(x))" using cnf2bhv_bhv2cnf by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))" by simp
  moreover from ¬(in. c∥⇘t i) have "¬(ic⇙↑⇘t(x). c∥⇘t i)"
  proof -
    from ¬(in. c∥⇘t i) have "lfinite (π⇘c(inf_llist t))" using proj_finite2 by simp
    then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
    moreover from the_enat (llength (π⇘c(inf_llist t))) - 1 < x have "c  t <c⇙↑⇘t(x)"
      using bhv2cnf_greater_lActive by simp
    ultimately show ?thesis using lActive_greater_active_all by simp
  qed      
  ultimately have "eval c t t' (c⇙↑⇘tx) γ"
    using validCI_cont[of c t "⇘c⇙↑⇘t(x)" γ] i. c∥⇘t i⇙› by blast
  moreover from i. c∥⇘t i⇙› ¬(in. c∥⇘t i) have "c  t  n" using lActive_less[of c t _ n] by auto
  with xc⇙↓⇘t(n) have "n c⇙↑⇘t(x)" using p2c_mono_c2p by blast  
  ultimately show ?thesis by auto
next
  assume "¬(i. c∥⇘t i)"
  moreover from eval c t t' n (b(γ)) have "eval c t t' n (λt n. n'n. γ t n')" using evt_def by simp
  ultimately obtain n' where "n'n" and "γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'"
    using ¬(i. c∥⇘t i) validCE_not_act[where γ="λt n. n'n. γ t n'"] by blast
  with ¬(i. c∥⇘t i) show ?thesis using validCI_not_act[of c t γ t' n'] by blast
qed    

subsubsection "Globally Operator"

definition glob :: "('cmp bta)  ('cmp bta)" ("b(_)" 22)
  where "b(γ)  λ t n. n'n. γ t n'"
    
lemma globIA[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes "in. c∥⇘t i⇙"
    and "n'. in'. c∥⇘t i; n'c  t⟩⇘n  n''c  t⟩⇘n'. n''c  t⟩⇘n' eval c t t' n'' γ"
    and "n'. ¬(in'. c∥⇘t i); n'c  t⟩⇘n  eval c t t' n' γ" 
  shows "eval c t t' n (b(γ))"
proof -
  have "n'the_enat c #⇘enat ninf_llist t. γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'"
  proof
    fix x::nat show
      "xthe_enat (c #⇘ninf_llist t)  γ (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    proof
      assume "xthe_enat (c #⇘ninf_llist t)"
      show "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x"
      proof (cases)
        assume "(x  llength (π⇘c(inf_llist t)))"
        hence "lfinite (π⇘c(inf_llist t))"
          using llength_geq_enat_lfiniteD[of "π⇘c(inf_llist t)" x] by simp
        then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
        moreover have "c∥⇘t c  t⟩⇘n⇙⇙" by (simp add: in. c∥⇘t i⇙› nxtActI)
        ultimately have "c  tc  t⟩⇘n⇙" using lActive_greatest[of c t "c  t⟩⇘n⇙"] by blast
        moreover have "⇘c⇙↑⇘t(x)  c  t" by simp
        ultimately have "⇘c⇙↑⇘t(x)  c  t⟩⇘n⇙" by arith
        moreover have "¬ (i'c⇙↑⇘t(x). c∥⇘t i')"
        proof -
          from lfinite (π⇘c(inf_llist t)) in. c∥⇘t i⇙›
            have "⇘c⇙↑⇘t(the_enat (llength (π⇘c(inf_llist t)))) = Suc (c  t)"
            using bhv2cnf_lActive by blast
          moreover from (x  llength (π⇘c(inf_llist t))) have "x  the_enat(llength (π⇘c(inf_llist t)))"
            using the_enat_mono by fastforce
          hence "⇘c⇙↑⇘t(x) c⇙↑⇘t(the_enat (llength (π⇘c(inf_llist t))))"
            using bhv2cnf_mono[of "the_enat (llength (π⇘c(inf_llist t)))" x] by simp
          ultimately have "⇘c⇙↑⇘t(x)  Suc (c  t)" by simp
          hence "⇘c⇙↑⇘t(x) > c  t" by simp
          with n''>z. ¬ c∥⇘t n''⇙› show ?thesis using lActive_greater_active_all by simp
        qed
        ultimately have "eval c t t' (c⇙↑⇘t(x)) γ" using assms(3) by simp
        hence "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))"
          using validCE_cont[of c t "⇘c⇙↑⇘t(x)" t' γ] in. c∥⇘t i⇙› ¬ (i'c⇙↑⇘t(x). c∥⇘t i') by blast
        moreover from (x  llength (π⇘c(inf_llist t)))
          have "(enat x  llength (π⇘c(inf_llist t)))" by auto
        with lfinite (π⇘c(inf_llist t)) have "llength (π⇘c(inf_llist t))"
          using llength_eq_infty_conv_lfinite by auto
        with (x  llength (π⇘c(inf_llist t)))
          have "the_enat(llength (π⇘c(inf_llist t))) - 1  x" by auto
        ultimately show ?thesis using cnf2bhv_bhv2cnf[of c t x] by simp
      next
        assume "¬(x  llength (π⇘c(inf_llist t)))"
        hence "x<llength (π⇘c(inf_llist t))" by simp
        then obtain n'::nat where "x=c #⇘n'inf_llist t" using nAct_exists by blast
        moreover from enat x < llength (π⇘c(inf_llist t)) enat x = c #⇘enat n'inf_llist t
          have "in'. c∥⇘t i⇙" using nAct_less_llength_active by force
        then obtain i where "in'" and "c∥⇘t i⇙" and "¬ (kn'. k < i  c∥⇘t k)"
          using nact_exists by blast
        moreover have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
        ultimately have "x=c #⇘iinf_llist t" using one_enat_def nAct_not_active_same by simp
        moreover have "c #⇘iinf_llist t" by simp
        ultimately have "x=the_enat(c #⇘iinf_llist t)" by fastforce
        from xthe_enat (c #⇘ninf_llist t) x=the_enat(c #⇘iinf_llist t)
        have "the_enat (c #⇘iinf_llist t)the_enat (c #⇘ninf_llist t)" by simp
        with c∥⇘t i⇙› have "ic  t⟩⇘n⇙" using active_geq_nxtAct by simp
        moreover from x=c #⇘iinf_llist t x < llength (π⇘c(inf_llist t))
          have "i'. i  enat i'  c∥⇘t i'⇙" using nAct_less_llength_active[of x c "inf_llist t" i] by simp
        hence "i'i. c∥⇘t i'⇙" by simp
        ultimately obtain n'' where "eval c t t' n'' γ" and "n''c  t⟩⇘i⇙" and "n''c  t⟩⇘i⇙"
          using assms(2) by blast
        moreover have "i'n''. c∥⇘t i'⇙"
          using c∥⇘t i⇙› n''c  t⟩⇘i⇙› less_or_eq_imp_le nxtAct_active by auto
        ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n''inf_llist t))"
          using validCE_act[of n'' c t t' γ] by blast
        moreover from n''c  t⟩⇘i⇙› and n''c  t⟩⇘i⇙›
          have "the_enat (c #⇘n''inf_llist t)=the_enat (c #⇘iinf_llist t)" using nAct_same by simp
        hence "the_enat (c #⇘n''inf_llist t) = x" by (simp add: x = the_enat c #⇘enat iinf_llist t)
        ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat x)" by simp
        thus ?thesis by simp
      qed
    qed
  qed
  with in. c∥⇘t i⇙› have "eval c t t' n (λt n. n'n. γ t n')"
    using validCI_act[of n c t "λ t n. n'n. γ t n'" t'] by blast
  thus ?thesis using glob_def by simp
qed
  
lemma globIN[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat  
  assumes "¬(in. c∥⇘t i)"
    and "n'. n'n  eval c t t' n' γ"
  shows "eval c t t' n (b(γ))"
proof cases
  assume "i. c∥⇘t i⇙"    
  from ¬(in. c∥⇘t i) have "lfinite (π⇘c(inf_llist t))" using proj_finite2 by simp
  then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
    
  have "x::natc⇙↓⇘t(n). γ (lnth (π⇘cinf_llist t @l inf_llist t')) x"
  proof
    fix x::nat show "(xc⇙↓⇘t(n))  γ (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    proof
      assume "xc⇙↓⇘t(n)"
      moreover from ¬(in. c∥⇘t i) have "c  t  n" using i. c∥⇘t i⇙› lActive_less by auto
      ultimately have "⇘c⇙↑⇘t(x)  n" using p2c_mono_c2p by simp
      with assms have "eval c t t' (c⇙↑⇘t(x)) γ" by simp    
      moreover have "¬ (i'c⇙↑⇘t(x). c∥⇘t i')"
      proof -
        from lfinite (π⇘c(inf_llist t)) i. c∥⇘t i⇙›
          have "⇘c⇙↑⇘t(the_enat (llength (π⇘c(inf_llist t)))) = Suc (c  t)"
          using bhv2cnf_lActive by blast
        moreover from ¬(in. c∥⇘t i) have "n>c  t"
          by (meson i. c∥⇘t i⇙› lActive_active leI le_eq_less_or_eq)
        hence "nSuc (c  t)" by simp
        with nSuc(c  t) ‹⇘c⇙↑⇘t(x)  n have "⇘c⇙↑⇘t(x)  Suc (c  t)" by simp
        hence "⇘c⇙↑⇘t(x) > c  t" by simp
        with n''>z. ¬ c∥⇘t n''⇙› show ?thesis using lActive_greater_active_all by simp
      qed
      ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))"
        using validCE_cont[of c t "⇘c⇙↑⇘t(x)" t' γ] i. c∥⇘t i⇙› by blast
      moreover have "x  the_enat (llength (π⇘c(inf_llist t))) - 1"
        using ‹⇘c⇙↓⇘t(n)  x cnf2bhv_def by auto
      ultimately show "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x"
        using cnf2bhv_bhv2cnf by simp
    qed
  qed
  with i. c∥⇘t i⇙› ¬(in. c∥⇘t i) have "eval c t t' n (λt n. n'n. γ t n')"
    using validCI_cont[of c t n "λ t n. n'n. γ t n'" t'] by simp
  thus ?thesis using glob_def by simp
next
  assume "¬(i. c∥⇘t i)"
  with assms have "n'n. γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'" using validCE_not_act by blast
  with ¬(i. c∥⇘t i) have "eval c t t' n (λt n. n'n. γ t n')"
    using validCI_not_act[where γ="λ t n. n'n. γ t n'"] by blast
  thus ?thesis using glob_def by simp
qed
      
lemma globEA[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and n'::nat
  assumes "in. c∥⇘t i⇙"
    and "eval c t t' n (b(γ))"
    and "n'c  t⟩⇘n⇙"
  shows "eval c t t' n' γ"
proof (cases)
  assume "in'. c∥⇘t i⇙"
  with n'c  t⟩⇘n⇙› have "the_enat (c #⇘n'inf_llist t)  the_enat (c #⇘ninf_llist t)"
    using nAct_mono_lNact in. c∥⇘t i⇙› by simp
  moreover from eval c t t' n (b(γ)) have "eval c t t' n (λt n. n'n. γ t n')"
    using glob_def by simp
  hence "xthe_enat c #⇘enat ninf_llist t. γ (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    using validCE_act in. c∥⇘t i⇙› by blast
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n'inf_llist t))" by simp
  with in'. c∥⇘t i⇙› show ?thesis using validCI_act by blast    
next
  assume "¬(in'. c∥⇘t i)"
  from eval c t t' n (b(γ)) have "eval c t t' n (λt n. n'n. γ t n')" using glob_def by simp
  hence "xthe_enat c #⇘enat ninf_llist t. γ (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    using validCE_act in. c∥⇘t i⇙› by blast
  moreover have "⇘c⇙↓⇘t(n')  the_enat (c #⇘ninf_llist t)"
  proof -
    have "c #⇘ninf_llist tllength (π⇘c(inf_llist t))" using nAct_le_proj by metis
    moreover from ¬ (in'. c∥⇘t i) have "llength (π⇘c(inf_llist t))"
      by (metis llength_eq_infty_conv_lfinite lnth_inf_llist proj_finite2)
    ultimately have "the_enat(c #⇘ninf_llist t)the_enat(llength (π⇘c(inf_llist t)))" by simp
    moreover from in. c∥⇘t i⇙› ¬ (in'. c∥⇘t i) have "n'>c  t"
      using lActive_active by (meson leI le_eq_less_or_eq)
    hence "⇘c⇙↓⇘t(n') > the_enat (llength (π⇘c(inf_llist t))) - 1" using cnf2bhv_greater_llength by simp
    ultimately show ?thesis by simp
  qed
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n'))" by simp
  with in. c∥⇘t i⇙› ¬(in'. c∥⇘t i) show ?thesis using validCI_cont by blast
qed

lemma globEANow:
  fixes c t t' n i γ
  assumes "n  i"
    and "c∥⇘t i⇙"
    and "eval c t t' n (bγ)"
  shows "eval c t t' i γ"
proof -
  from c∥⇘t i⇙› n  i have "in. c∥⇘t i⇙" by auto
  moreover from n  i have "c  t⟩⇘n i" using dual_order.trans lNactLe by blast
  ultimately show ?thesis using globEA[of n c t t' γ i] eval c t t' n (bγ) by simp
qed

lemma globEN[elim]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and n'::nat
  assumes "¬(in. c∥⇘t i)"
    and "eval c t t' n (b(γ))"
    and "n'n"
  shows "eval c t t' n' γ"
proof cases
  assume "i. c∥⇘t i⇙"
  moreover from eval c t t' n (b(γ)) have "eval c t t' n (λt n. n'n. γ t n')"
    using glob_def by simp
  ultimately have "xc⇙↓⇘tn. γ (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    using validCE_cont[of c t n t' "λt n. n'n. γ t n'"] ¬(in. c∥⇘t i) by blast
  moreover from n'n have "⇘c⇙↓⇘t(n') c⇙↓⇘t(n)" using cnf2bhv_mono by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n'))" by simp
  moreover from ¬(in. c∥⇘t i) n'n have "¬(in'. c∥⇘t i)" by simp
  ultimately show ?thesis using validCI_cont i. c∥⇘t i⇙› by blast
next
  assume "¬(i. c∥⇘t i)"
  moreover from eval c t t' n (b(γ)) have "eval c t t' n (λt n. n'n. γ t n')"
    using glob_def by simp
  ultimately have "n'n. γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'"
    using ¬(i. c∥⇘t i) validCE_not_act[where γ="λt n. n'n. γ t n'"] by blast
  with ¬(i. c∥⇘t i) n'n show ?thesis using validCI_not_act by blast
qed

subsubsection "Until Operator"

definition until :: "('cmp bta)  ('cmp bta)  ('cmp bta)" (infixl "𝔘b" 21)
  where "γ' 𝔘b γ  λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')"
    
lemma untilIA[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and n'::nat
  assumes "in. c∥⇘t i⇙"
    and "n'c  t⟩⇘n⇙"
    and "in'. c∥⇘t i  n''c  t⟩⇘n'. n'' c  t⟩⇘n' eval c t t' n'' γ 
      (n'''c  t⟩⇘n. n'''< c  t⟩⇘n'' (n''''c  t⟩⇘n'''. n'''' c  t⟩⇘n''' eval c t t' n'''' γ'))"
    and "¬(in'. c∥⇘t i)  eval c t t' n' γ 
      (n''c  t⟩⇘n. n''< n'
       ((in''. c∥⇘t i)  (n'''c  t⟩⇘n''. n''' c  t⟩⇘n'' eval c t t' n''' γ')) 
      (¬(in''. c∥⇘t i)  eval c t t' n'' γ'))"
  shows "eval c t t' n (γ' 𝔘b γ)"
proof cases
  assume "i'n'. c∥⇘t i'⇙"
  with assms(3) obtain n'' where "n''c  t⟩⇘n'⇙" and "n'' c  t⟩⇘n'⇙" and "eval c t t' n'' γ" and
    a1: "n'''c  t⟩⇘n. n'''< c  t⟩⇘n'' (n''''c  t⟩⇘n'''. n'''' c  t⟩⇘n''' eval c t t' n'''' γ')" by blast
  hence "i'n''. c∥⇘t i'⇙" using i'n'. c∥⇘t i'⇙› nxtActI by blast
  with eval c t t' n'' γ have
    "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n''inf_llist t))"
    using validCE_act by blast
  moreover have "the_enat (c #⇘ninf_llist t)  the_enat (c #⇘n''inf_llist t)"
  proof -
    from c  t⟩⇘nn' have "c #⇘ninf_llist t  c #⇘n'inf_llist t"
      using nAct_mono_lNact by simp
    moreover from c  t⟩⇘n'n'' have "c #⇘n'inf_llist t  c #⇘n''inf_llist t"
      using nAct_mono_lNact by simp        
    ultimately have "c #⇘ninf_llist t  c #⇘n''inf_llist t" by simp
    moreover have "c #⇘n'inf_llist t  " by simp
    ultimately show ?thesis by simp
  qed
  moreover have "i'n. c∥⇘t i'⇙"
  proof -
    from i'n'. c∥⇘t i'⇙› obtain i' where "i'n'" and "c∥⇘t i'⇙" by blast
    with n'c  t⟩⇘n⇙› have "i' n" using lNactGe le_trans by blast
    with c∥⇘t i'⇙› show ?thesis by blast
  qed
  moreover have "n'the_enat c #⇘ninf_llist t. n' < (the_enat c #⇘enat n''inf_llist t)
     γ' (lnth (π⇘cinf_llist t @l inf_llist t')) n'"
  proof
    fix x::nat show "xthe_enat (c #⇘ninf_llist t)
       x < (the_enat c #⇘enat n''inf_llist t)  γ' (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    proof (rule HOL.impI[OF HOL.impI])
      assume "xthe_enat (c #⇘ninf_llist t)" and "x < (the_enat c #⇘enat n''inf_llist t)"
      moreover have "the_enat (c #⇘enat n''inf_llist t) = c #⇘enat n''inf_llist t" by simp
      ultimately have "x<llength (π⇘c(inf_llist t))" using nAct_le_proj[of c n'' "inf_llist t"]
        by (metis enat_ord_simps(2) less_le_trans)
      hence "x<llength (π⇘c(inf_llist t))" by simp
      then obtain n'::nat where "x=c #⇘n'inf_llist t" using nAct_exists by blast
      moreover from enat x < llength (π⇘c(inf_llist t)) enat x = c #⇘enat n'inf_llist t
        have "in'. c∥⇘t i⇙" using nAct_less_llength_active by force
      then obtain i where "in'" and "c∥⇘t i⇙" and "¬ (kn'. k < i  c∥⇘t k)" using nact_exists by blast
      moreover have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
      ultimately have "x=c #⇘iinf_llist t" using one_enat_def nAct_not_active_same by simp
      moreover have "c #⇘iinf_llist t" by simp
      ultimately have "x=the_enat(c #⇘iinf_llist t)" by fastforce
      from xthe_enat (c #⇘ninf_llist t) x=the_enat(c #⇘iinf_llist t)
      have "the_enat (c #⇘iinf_llist t)the_enat (c #⇘ninf_llist t)" by simp
      with c∥⇘t i⇙› have "ic  t⟩⇘n⇙" using active_geq_nxtAct by simp
      moreover have "i < c  t⟩⇘n''⇙"
      proof -
        have "the_enat c #⇘enat n''inf_llist t = c #⇘enat n''inf_llist t" by simp
        with x < (the_enat c #⇘enat n''inf_llist t) and x=c #⇘iinf_llist t have
          "c #⇘iinf_llist t<c #⇘n''inf_llist t" by (metis enat_ord_simps(2))
        hence "i<n''" using nAct_strict_mono_back[of c i "inf_llist t" n''] by auto
        with c∥⇘t i⇙› show ?thesis using lNact_notActive leI by blast
      qed
      ultimately obtain n'' where "eval c t t' n'' γ'" and "n''c  t⟩⇘i⇙" and "n''c  t⟩⇘i⇙"
        using a1 by auto
      moreover have "i'n''. c∥⇘t i'⇙"
        using c∥⇘t i⇙› n''c  t⟩⇘i⇙› less_or_eq_imp_le nxtAct_active by auto
      ultimately have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n''inf_llist t))"
        using validCE_act[of n'' c t t' γ'] by blast
      moreover from n''c  t⟩⇘i⇙› and n''c  t⟩⇘i⇙›
        have "the_enat (c #⇘n''inf_llist t)=the_enat (c #⇘iinf_llist t)" using nAct_same by simp
      hence "the_enat (c #⇘n''inf_llist t) = x" by (simp add: x = the_enat c #⇘enat iinf_llist t)
      ultimately show "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x" by simp
    qed
  qed 
  ultimately have "eval c t t' n (λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n'))"
    using validCI_act[where γ="λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')"] by blast
  thus ?thesis using until_def by simp
next
  assume "¬(i'n'. c∥⇘t i')"
  with assms(4) have "eval c t t' n' γ" and a2: "n''c  t⟩⇘n. n''< n'
     ((in''. c∥⇘t i)  (n'''c  t⟩⇘n''. n''' c  t⟩⇘n'' eval c t t' n''' γ')) 
    (¬(in''. c∥⇘t i)  eval c t t' n'' γ')" by auto
  with ¬(i'n'. c∥⇘t i') eval c t t' n' γ in. c∥⇘t i⇙› have
    "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n'))" using validCE_cont by blast
  moreover have "⇘c⇙↓⇘t(n')  the_enat (c #⇘ninf_llist t)"
  proof -
    from (in. c∥⇘t i) ¬(i'n'. c∥⇘t i') have "n'  c  t" using lActive_less by auto
    hence "⇘c⇙↓⇘t(n')  the_enat (llength (π⇘c(inf_llist t))) - 1" using cnf2bhv_ge_llength by simp
    moreover have "the_enat(llength (π⇘c(inf_llist t))) - 1  the_enat(c #⇘ninf_llist t)"
    proof -
      from in. c∥⇘t i⇙› have "llength (π⇘c(inf_llist t))  eSuc (c #⇘ninf_llist t)"
        using nAct_llength_proj by simp
      moreover from ¬(i'n'. c∥⇘t i') have "lfinite (π⇘c(inf_llist t))"
        using proj_finite2[of "inf_llist t"] by simp
      hence "llength (π⇘c(inf_llist t))" using llength_eq_infty_conv_lfinite by auto
      ultimately have "the_enat (llength (π⇘c(inf_llist t)))  the_enat(eSuc (c #⇘ninf_llist t))"
        by simp
      moreover have "c #⇘ninf_llist t" by simp
      ultimately have "the_enat (llength (π⇘c(inf_llist t)))  Suc (the_enat (c #⇘ninf_llist t))"
        using the_enat_eSuc by simp
      thus ?thesis by simp
    qed
    ultimately show ?thesis by simp
  qed
  moreover have "xthe_enat c #⇘ninf_llist t. x < (c⇙↓⇘t(n'))
     γ' (lnth (π⇘cinf_llist t @l inf_llist t')) x"
  proof
    fix x::nat show
      "xthe_enat c #⇘ninf_llist t  x < (c⇙↓⇘t(n'))  γ' (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    proof (rule HOL.impI[OF HOL.impI])
      assume "xthe_enat c #⇘ninf_llist t" and "x < (c⇙↓⇘t(n'))"
      show "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x"
      proof (cases)
        assume "(x  llength (π⇘c(inf_llist t)))"
        hence "lfinite (π⇘c(inf_llist t))"
          using llength_geq_enat_lfiniteD[of "π⇘c(inf_llist t)" x] by simp
        then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
        moreover have "c∥⇘t c  t⟩⇘n⇙⇙" by (simp add: in. c∥⇘t i⇙› nxtActI)
        ultimately have "c  tc  t⟩⇘n⇙" using lActive_greatest[of c t "c  t⟩⇘n⇙"] by blast
        moreover have "⇘c⇙↑⇘t(x)  c  t" by simp
        ultimately have "⇘c⇙↑⇘t(x)  c  t⟩⇘n⇙" by arith
        moreover have "¬ (i'c⇙↑⇘t(x). c∥⇘t i')"
        proof -
          from lfinite (π⇘c(inf_llist t)) in. c∥⇘t i⇙›
            have "⇘c⇙↑⇘t(the_enat (llength (π⇘c(inf_llist t)))) = Suc (c  t)"
            using bhv2cnf_lActive by blast
          moreover from (x  llength (π⇘c(inf_llist t))) have "x  the_enat(llength (π⇘c(inf_llist t)))"
            using the_enat_mono by fastforce
          hence "⇘c⇙↑⇘t(x) c⇙↑⇘t(the_enat (llength (π⇘c(inf_llist t))))"
            using bhv2cnf_mono[of "the_enat (llength (π⇘c(inf_llist t)))" x] by simp
          ultimately have "⇘c⇙↑⇘t(x)  Suc (c  t)" by simp
          hence "⇘c⇙↑⇘t(x) > c  t" by simp
          with n''>z. ¬ c∥⇘t n''⇙› show ?thesis using lActive_greater_active_all by simp
        qed
        moreover have "⇘c⇙↑⇘tx < n'"
        proof -
          from lfinite (π⇘c(inf_llist t)) have "llength (π⇘cinf_llist t) = the_enat (llength (π⇘cinf_llist t))"
            by (simp add: enat_the_enat llength_eq_infty_conv_lfinite)
          with x  llength (π⇘c(inf_llist t)) have "xthe_enat (llength (π⇘cinf_llist t))"
            using enat_ord_simps(1) by fastforce
          moreover from in. c∥⇘t i⇙› have "llength (π⇘cinf_llist t)1" using proj_one by force
          ultimately have "the_enat (llength (π⇘cinf_llist t)) - 1  x" by simp
          with x < (c⇙↓⇘t(n')) show ?thesis using c2p_mono_p2c_strict by simp
        qed
        ultimately have "eval c t t' (c⇙↑⇘t(x)) γ'" using a2 by blast
        hence "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))"
          using validCE_cont[of c t "⇘c⇙↑⇘t(x)" t' γ'] in. c∥⇘t i⇙› ¬ (i'c⇙↑⇘t(x). c∥⇘t i') by blast
        moreover from (x  llength (π⇘c(inf_llist t)))
          have "(enat x  llength (π⇘c(inf_llist t)))" by auto
        with lfinite (π⇘c(inf_llist t)) have "llength (π⇘c(inf_llist t))"
          using llength_eq_infty_conv_lfinite by auto
        with (x  llength (π⇘c(inf_llist t)))
          have "the_enat(llength (π⇘c(inf_llist t))) - 1  x" by auto
        ultimately show ?thesis using cnf2bhv_bhv2cnf[of c t x] by simp
      next
        assume "¬(x  llength (π⇘c(inf_llist t)))"
        hence "x<llength (π⇘c(inf_llist t))" by simp
        then obtain n''::nat where "x=c #⇘n''inf_llist t" using nAct_exists by blast
        moreover from enat x < llength (π⇘c(inf_llist t)) enat x = c #⇘enat n''inf_llist t
          have "in''. c∥⇘t i⇙" using nAct_less_llength_active by force
        then obtain i where "in''" and "c∥⇘t i⇙" and "¬ (kn''. k < i  c∥⇘t k)" 
          using nact_exists by blast
        moreover have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
        ultimately have "x=c #⇘iinf_llist t" using one_enat_def nAct_not_active_same by simp
        moreover have "c #⇘iinf_llist t" by simp
        ultimately have "x=the_enat(c #⇘iinf_llist t)" by fastforce
        from xthe_enat (c #⇘ninf_llist t) x=the_enat(c #⇘iinf_llist t)
        have "the_enat (c #⇘iinf_llist t)the_enat (c #⇘ninf_llist t)" by simp
        with c∥⇘t i⇙› have "ic  t⟩⇘n⇙" using active_geq_nxtAct by simp
        moreover from x=c #⇘iinf_llist t x < llength (π⇘c(inf_llist t))
          have "i'. i  enat i'  c∥⇘t i'⇙" using nAct_less_llength_active[of x c "inf_llist t" i] by simp
        hence "i'i. c∥⇘t i'⇙" by simp
        moreover have "i<n'"
        proof -
          from in. c∥⇘t i⇙› ¬(i'n'. c∥⇘t i') have "n'c  t" using lActive_less by auto
          hence "⇘c⇙↓⇘t(n')the_enat(llength (π⇘c(inf_llist t))) - 1" using cnf2bhv_ge_llength by simp
          with x<llength (π⇘c(inf_llist t)) show ?thesis
            using ¬ (i'n'. c∥⇘t i') c∥⇘t i⇙› le_neq_implies_less nat_le_linear by blast
        qed
        ultimately obtain n''' where "eval c t t' n''' γ'" and "n'''c  t⟩⇘i⇙" and "n'''c  t⟩⇘i⇙"
          using a2 by blast
        moreover from c∥⇘t i⇙› have "c∥⇘t c  t⟩⇘i⇙⇙" using nxtActI by auto
        with n'''c  t⟩⇘i⇙› have "i'n'''. c∥⇘t i'⇙" using less_or_eq_imp_le by blast
        ultimately have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n'''inf_llist t))"
          using validCE_act[of n''' c t t' γ'] by blast
        moreover from n'''c  t⟩⇘i⇙› and n'''c  t⟩⇘i⇙›
          have "the_enat (c #⇘n'''inf_llist t)=the_enat (c #⇘iinf_llist t)" using nAct_same by simp
        hence "the_enat (c #⇘n'''inf_llist t) = x" by (simp add: x = the_enat c #⇘enat iinf_llist t)
        ultimately have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat x)" by simp
        thus ?thesis by simp
      qed
    qed
  qed
  ultimately have "eval c t t' n (λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n'))"
    using in. c∥⇘t i⇙› validCI_act[of n c t "λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')" t']
    by blast
  thus ?thesis using until_def by simp
qed
  
lemma untilIN[intro]:
  fixes c::'id
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and n::nat
    and n'::nat
  assumes "¬(in. c∥⇘t i)"
    and "n'n"
    and "eval c t t' n' γ"
    and a1: "n''. nn''; n''<n'  eval c t t' n'' γ'"
  shows "eval c t t' n (γ' 𝔘b γ)"
proof cases
  assume "i. c∥⇘t i⇙"
  moreover from assms(1) assms(2) have "¬(i'n'. c∥⇘t i')" by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n'))"
    using validCE_cont[of c t n' t' γ] eval c t t' n' γ by blast
  moreover from n'n have "⇘c⇙↓⇘t(n') c⇙↓⇘t(n)" using cnf2bhv_mono by simp
  moreover have "x::natc⇙↓⇘t(n). x<c⇙↓⇘t(n')  γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x"
  proof (rule HOL.allI[OF HOL.impI[OF HOL.impI]])
    fix x assume "xc⇙↓⇘t(n)" and "x<c⇙↓⇘t(n')"
  
    from ¬(in. c∥⇘t i) have "c  t  n" using i. c∥⇘t i⇙› lActive_less by auto
    with xc⇙↓⇘t(n) have "⇘c⇙↑⇘t(x)  n" using p2c_mono_c2p by simp
    moreover from c  t  n ‹⇘c⇙↓⇘t(n)  x have "x  the_enat (llength (π⇘c(inf_llist t))) - 1"
      using cnf2bhv_ge_llength dual_order.trans by blast
    with x<c⇙↓⇘t(n') have "⇘c⇙↑⇘t(x) < n'" using c2p_mono_p2c_strict[of c t x n'] by simp
    moreover from ¬ (in. c∥⇘t i) ‹⇘c⇙↑⇘t(x)  n have "¬ (i''c⇙↑⇘t(x). c∥⇘t i'')" by auto
    ultimately have "eval c t t' (c⇙↑⇘t(x)) γ'" using a1[of "⇘c⇙↑⇘t(x)"] by simp
    with ¬ (i''c⇙↑⇘tx. c∥⇘t i'')
      have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))"
      using validCE_cont[of c t "⇘c⇙↑⇘t(x)" t' γ'] i. c∥⇘t i⇙› by blast
    moreover have "x  the_enat (llength (π⇘c(inf_llist t))) - 1"
      using ‹⇘c⇙↓⇘t(n)  x cnf2bhv_def by auto
    ultimately show "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (x)"
      using cnf2bhv_bhv2cnf by simp
  qed   
  ultimately have "eval c t t' n (λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n'))"
    using validCI_cont[of c t n "λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')" t']
    i. c∥⇘t i⇙› ¬(i'n. c∥⇘t i') by blast
  thus ?thesis using until_def by simp
next
  assume "¬(i. c∥⇘t i)"
  with assms have "n''n. γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'' 
    (n'n. n' < n''  γ' (lnth (π⇘cinf_llist t @l inf_llist t')) n')" using validCE_not_act by blast
  with ¬(i. c∥⇘t i) have "eval c t t' n (λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n'))"
    using validCI_not_act[where γ="λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')"] by blast
  thus ?thesis using until_def by simp
qed
  
lemma untilEA[elim]:
  fixes n::nat
    and n'::nat
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and c::'id
  assumes "in. c∥⇘t i⇙"
    and "eval c t t' n (γ' 𝔘b γ)"
  shows "n'c  t⟩⇘n.
    ((in'. c∥⇘t i)  (n'' c  t⟩⇘n'. n''c  t⟩⇘n' eval c t t' n'' γ)
       (n''c  t⟩⇘n. n'' < c  t⟩⇘n' eval c t t' n'' γ') 
    (¬(in'. c∥⇘t i))  eval c t t' n' γ  (n''c  t⟩⇘n. n'' < n'  eval c t t' n'' γ'))"
proof -
  from eval c t t' n (γ' 𝔘b γ)
    have "eval c t t' n (λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n'))" using until_def by simp
  with in. c∥⇘t i⇙› obtain x
    where "xthe_enat c #⇘enat ninf_llist t" and "γ (lnth (π⇘cinf_llist t @l inf_llist t')) x"
    and a1: "x'the_enat c #⇘enat ninf_llist t. x' < x  γ' (lnth (π⇘cinf_llist t @l inf_llist t')) x'"
    using validCE_act[where γ="λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')"] by blast
  thus ?thesis
  proof (cases)
    assume "x  llength (π⇘c(inf_llist t))"
    moreover from (x  llength (π⇘c(inf_llist t))) have "llength (π⇘c(inf_llist t))"
      by (metis infinity_ileE)
    moreover from in. c∥⇘t i⇙› have "llength (π⇘c(inf_llist t))1"
      using proj_one[of "inf_llist t"] by auto
    ultimately have "the_enat (llength (π⇘c(inf_llist t))) - 1 < x"
      by (metis One_nat_def Suc_ile_eq antisym_conv2 diff_Suc_less enat_ord_simps(2)
          enat_the_enat less_imp_diff_less one_enat_def)
    hence "x =c⇙↓⇘t(c⇙↑⇘t(x))" using cnf2bhv_bhv2cnf by simp
    with γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x
      have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))" by simp
    moreover have "¬(ic⇙↑⇘t(x). c∥⇘t i)"
    proof -
      from x  llength (π⇘c(inf_llist t)) have "lfinite (π⇘c(inf_llist t))"
        using llength_geq_enat_lfiniteD[of "π⇘c(inf_llist t)" x] by simp
      then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
      moreover from the_enat (llength (π⇘c(inf_llist t))) - 1 < x have "c  t <c⇙↑⇘t(x)"
        using bhv2cnf_greater_lActive by simp
      ultimately show ?thesis using lActive_greater_active_all by simp
    qed
    ultimately have "eval c t t' (c⇙↑⇘tx) γ"
      using in. c∥⇘t i⇙› validCI_cont[of c t "⇘c⇙↑⇘t(x)"] by blast
    moreover have "⇘c⇙↑⇘t(x)  c  t⟩⇘n⇙"
    proof -
      from x  llength (π⇘c(inf_llist t)) have "lfinite (π⇘c(inf_llist t))"
        using llength_geq_enat_lfiniteD[of "π⇘c(inf_llist t)" x] by simp
      then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
      moreover from in. c∥⇘t i⇙› have "c∥⇘t c  t⟩⇘n⇙⇙" using nxtActI by simp
      ultimately have "c  tc  t⟩⇘n⇙" using lActive_greatest by fastforce
      moreover have "⇘c⇙↑⇘t(x)  c  t" by simp
      ultimately show "⇘c⇙↑⇘t(x)  c  t⟩⇘n⇙" by arith
    qed
    moreover have "n''c  t⟩⇘n. n'' < (c⇙↑⇘tx)  eval c t t' n'' γ'"
    proof
      fix n'' show "c  t⟩⇘n n''  n'' <c⇙↑⇘tx  eval c t t' n'' γ'"
      proof (rule HOL.impI[OF HOL.impI])
        assume "c  t⟩⇘n n''" and "n'' <c⇙↑⇘tx"
        show "eval c t t' n'' γ'"
        proof cases
          assume "in''. c∥⇘t i⇙"
          with n''c  t⟩⇘n⇙› have "the_enat (c #⇘n''inf_llist t)  the_enat (c #⇘ninf_llist t)"
            using nAct_mono_lNact in. c∥⇘t i⇙› by simp
          moreover have "the_enat (c #⇘n''inf_llist t)<x"
          proof -
            from in''. c∥⇘t i⇙› have "eSuc c #⇘enat n''inf_llist t  llength (π⇘cinf_llist t)"
              using nAct_llength_proj by auto
            with x  llength (π⇘c(inf_llist t)) have "eSuc c #⇘enat n''inf_llist t  x" by simp
            moreover have "c #⇘enat n''inf_llist t" by simp
            ultimately have "Suc (the_enat(c #⇘enat n''inf_llist t))  x"
              by (metis enat.distinct(2) the_enat.simps the_enat_eSuc the_enat_mono)
            thus ?thesis by simp
          qed
          ultimately have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n''inf_llist t))"
            using a1 by auto
          with in''. c∥⇘t i⇙› show ?thesis using validCI_act by blast      
        next
          assume "¬(in''. c∥⇘t i)"
          moreover have "⇘c⇙↓⇘t(n'')  the_enat (c #⇘ninf_llist t)"
          proof -
            have "c #⇘ninf_llist tllength (π⇘c(inf_llist t))" using nAct_le_proj by metis
            moreover from ¬ (in''. c∥⇘t i) have "llength (π⇘c(inf_llist t))"
              by (metis llength_eq_infty_conv_lfinite lnth_inf_llist proj_finite2)
            ultimately have "the_enat(c #⇘ninf_llist t)the_enat(llength (π⇘c(inf_llist t)))" by simp
            moreover from in. c∥⇘t i⇙› ¬ (in''. c∥⇘t i) have "n''>c  t"
              using lActive_active by (meson leI le_eq_less_or_eq)
            hence "⇘c⇙↓⇘t(n'') > the_enat (llength (π⇘c(inf_llist t))) - 1" using cnf2bhv_greater_llength by simp
            ultimately show ?thesis by simp
          qed
          moreover from ¬(in''. c∥⇘t i) have "c  t  n''" using assms(1) lActive_less by auto
            with n'' <c⇙↑⇘tx have "⇘c⇙↓⇘t(n'')<x" using p2c_mono_c2p_strict by simp
          ultimately have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n''))"
            using a1 by auto
          with in. c∥⇘t i⇙› ¬(in''. c∥⇘t i) show ?thesis using validCI_cont by blast              
        qed
      qed
    qed
    ultimately show ?thesis using ¬(ic⇙↑⇘t(x). c∥⇘t i) by blast
  next
    assume "¬(x  llength (π⇘c(inf_llist t)))"
    hence "x<llength (π⇘c(inf_llist t))" by simp
    then obtain n'::nat where "x=c #⇘n'inf_llist t" using nAct_exists by blast
    with enat x < llength (π⇘c(inf_llist t)) have "in'. c∥⇘t i⇙" using nAct_less_llength_active by force
    then obtain i where "in'" and "c∥⇘t i⇙" and "¬ (kn'. k < i  c∥⇘t k)" using nact_exists by blast
    moreover have "(n'' c  t⟩⇘i. n''c  t⟩⇘i eval c t t' n'' γ)"
    proof
      fix n'' show "c  t⟩⇘i n''  n''  c  t⟩⇘i eval c t t' n'' γ"
      proof(rule HOL.impI[OF HOL.impI])
        assume "c  t⟩⇘i n''" and "n''  c  t⟩⇘i⇙"
        hence "the_enat (c #⇘enat iinf_llist t) = the_enat (c #⇘enat n''inf_llist t)"
          using nAct_same by simp
        moreover from c∥⇘t i⇙› have "c∥⇘t c  t⟩⇘i⇙⇙" using nxtActI by auto
        with n''  c  t⟩⇘i⇙› have "in''. c∥⇘t i⇙" using dual_order.strict_implies_order by auto
        moreover have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat iinf_llist t))"
        proof -
          have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
          with x=c #⇘n'inf_llist t in' ¬ (kn'. k < i  c∥⇘t k) have "x=c #⇘iinf_llist t"
            using one_enat_def nAct_not_active_same by simp
          moreover have "c #⇘iinf_llist t" by simp
          ultimately have "x=the_enat(c #⇘iinf_llist t)" by fastforce        
          thus ?thesis using γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x by blast
        qed
        with the_enat (c #⇘enat iinf_llist t) = the_enat (c #⇘enat n''inf_llist t) have
          "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘enat n''inf_llist t))" by simp
        ultimately show "eval c t t' n'' γ" using validCI_act by blast
      qed
    qed
    moreover have "ic  t⟩⇘n⇙"
    proof -
      have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
      with x=c #⇘n'inf_llist t in' ¬ (kn'. k < i  c∥⇘t k) have "x=c #⇘iinf_llist t"
        using one_enat_def nAct_not_active_same by simp
      moreover have "c #⇘iinf_llist t" by simp
      ultimately have "x=the_enat(c #⇘iinf_llist t)" by fastforce        
      with xthe_enat (c #⇘ninf_llist t)
        have "the_enat (c #⇘iinf_llist t)the_enat (c #⇘ninf_llist t)" by simp
      with c∥⇘t i⇙› show ?thesis using active_geq_nxtAct by simp
    qed
    moreover have "n''c  t⟩⇘n. n'' < c  t⟩⇘i eval c t t' n'' γ'"
    proof
      fix n'' show "c  t⟩⇘n n''  n'' < c  t⟩⇘i eval c t t' n'' γ'"
      proof (rule HOL.impI[OF HOL.impI])
        assume "c  t⟩⇘n n''" and "n'' < c  t⟩⇘i⇙"
        moreover have "c  t⟩⇘ii" by simp
        ultimately have "in''. c∥⇘t i⇙" using c∥⇘t i⇙› by (meson less_le less_le_trans)
        with n''c  t⟩⇘n⇙› have "the_enat (c #⇘n''inf_llist t)  the_enat (c #⇘ninf_llist t)"
          using nAct_mono_lNact in. c∥⇘t i⇙› by simp
        moreover have "the_enat (c #⇘n''inf_llist t) < x"
        proof -
          from n'' < c  t⟩⇘i⇙› c  t⟩⇘i i have "n'' < i" using dual_order.strict_trans1 by arith
          with n'' < c  t⟩⇘i⇙› have "i'n''. i' < i  c∥⇘t i'⇙" using lNact_least[of i n''] by fastforce
          hence "c #⇘n''inf_llist t < c #⇘iinf_llist t" using nAct_less by auto
          moreover have "enat i - 1 < llength (inf_llist t)" by (simp add: one_enat_def)
          with x=c #⇘n'inf_llist t in' ¬ (kn'. k < i  c∥⇘t k) have "x=c #⇘iinf_llist t"
            using one_enat_def nAct_not_active_same by simp    
          moreover have "c #⇘n''inf_llist t" by simp
          ultimately show ?thesis by (metis enat_ord_simps(2) enat_the_enat)
        qed
        ultimately have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (the_enat (c #⇘n''inf_llist t))"
          using a1 by auto
        with in''. c∥⇘t i⇙› show "eval c t t' n'' γ'" using validCI_act by blast
      qed
    qed
    ultimately show ?thesis using c∥⇘t i⇙› by auto
  qed    
qed

lemma untilEN[elim]:
  fixes n::nat
    and n'::nat
    and t::"nat  cnf"
    and t'::"nat  'cmp"
    and c::'id
  assumes "i. in  c∥⇘t i⇙"
    and "eval c t t' n (γ' 𝔘b γ)"
  shows "n'n. eval c t t' n' γ 
    (n''n. n'' < n'  eval c t t' n'' γ')"
proof cases
  assume "i. c∥⇘t i⇙"
  moreover from eval c t t' n (γ' 𝔘b γ)
    have "eval c t t' n (λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n'))" using until_def by simp
  ultimately have "n''c⇙↓⇘t(n). γ (lnth (π⇘cinf_llist t @l inf_llist t')) n'' 
    (n'c⇙↓⇘t(n). n' < n''  γ' (lnth (π⇘cinf_llist t @l inf_llist t')) n')"
    using validCE_cont[where γ="λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')"]
    i. in  c∥⇘t i⇙› by blast
  then obtain x where "xc⇙↓⇘t(n)" and "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x"
    and "x'c⇙↓⇘t(n). x'<x  γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x'" by auto
  moreover from ¬(in. c∥⇘t i) have "the_enat (llength (π⇘c(inf_llist t))) - 1 < x"
  proof -
    have "c  t < n"
    proof (rule ccontr)
      assume "¬c  t < n"
      hence "c  t  n" by simp
      moreover from i. c∥⇘t i⇙› ¬ (in. c∥⇘t i) have "c∥⇘t c  t⇙"
        using lActive_active less_or_eq_imp_le by blast
      ultimately show False using ¬ (in. c∥⇘t i) by simp
    qed
    hence "the_enat (llength (π⇘c(inf_llist t))) - 1 <c⇙↓⇘t(n)" using cnf2bhv_greater_llength by simp
    with xc⇙↓⇘t(n) show ?thesis by simp
  qed
  hence "x =c⇙↓⇘t(c⇙↑⇘t(x))" using cnf2bhv_bhv2cnf by simp
  ultimately have "γ (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(c⇙↑⇘t(x)))" by simp
  moreover from ¬(in. c∥⇘t i) have "¬(ic⇙↑⇘t(x). c∥⇘t i)"
  proof -
    from ¬(in. c∥⇘t i) have "lfinite (π⇘c(inf_llist t))" using proj_finite2 by simp
    then obtain z where "n''>z. ¬ c∥⇘t n''⇙" using proj_finite_bound by blast
    moreover from the_enat (llength (π⇘c(inf_llist t))) - 1 < x have "c  t <c⇙↑⇘t(x)"
      using bhv2cnf_greater_lActive by simp
    ultimately show ?thesis using lActive_greater_active_all by simp
  qed      
  ultimately have "eval c t t' (c⇙↑⇘t(x)) γ" using validCI_cont i. c∥⇘t i⇙› by blast
  moreover from i. c∥⇘t i⇙› ¬(in. c∥⇘t i) have "c  t  n" using lActive_less[of c t _ n] by auto
  with xc⇙↓⇘t(n) have "n c⇙↑⇘t(x)" using p2c_mono_c2p by blast
  moreover have "n''n. n'' <c⇙↑⇘t(x)  eval c t t' n'' γ'"
  proof (rule HOL.allI[OF HOL.impI[OF HOL.impI]])
    fix n'' assume "n  n''" and "n'' <c⇙↑⇘t(x)"
    hence "⇘c⇙↓⇘t(n'')c⇙↓⇘t(n)" using cnf2bhv_mono by simp
    moreover have "n''<c⇙↑⇘t(x)" by (simp add: n'' <c⇙↑⇘tx)
    with c  t  n n  n'' have "⇘c⇙↓⇘t(n'')<c⇙↓⇘t(c⇙↑⇘t(x))" using cnf2bhv_mono_strict by simp
    with x =c⇙↓⇘t(c⇙↑⇘t(x)) have "⇘c⇙↓⇘t(n'')< x" by simp
    ultimately have "γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) (c⇙↓⇘t(n''))"
      using x'c⇙↓⇘t(n). x'<x  γ' (lnth ((π⇘c(inf_llist t)) @l (inf_llist t'))) x' by simp
    moreover from n  n'' have "i. in''  c∥⇘t i⇙" using i. in  c∥⇘t i⇙› by simp
    ultimately show "eval c t t' n'' γ'" using validCI_cont using i. c∥⇘t i⇙› by blast
  qed
  ultimately show ?thesis by auto
next
  assume "¬(i. c∥⇘t i)"
  moreover from eval c t t' n (γ' 𝔘b γ)
    have "eval c t t' n (λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n'))" using until_def by simp
  ultimately have "n''n. γ (lnth (π⇘cinf_llist t @l inf_llist t')) n''
     (n'n. n' < n''  γ' (lnth (π⇘cinf_llist t @l inf_llist t')) n')" using ¬(i. c∥⇘t i)
    validCE_not_act[where γ="λ t n. n''n. γ t n''  (n'n. n' < n''  γ' t n')"] by blast
  with ¬(i. c∥⇘t i) show ?thesis using validCI_not_act by blast
qed
  
subsubsection "Weak Until"

definition wuntil :: "('cmp bta)  ('cmp bta)  ('cmp bta)" (infixl "𝔚b" 20)
  where "γ' 𝔚b γ  γ' 𝔘b γ b b(γ')"

end
  
end