Theory Distributed_Distinct_Elements_Inner_Algorithm
section ‹Inner Algorithm\label{sec:inner_algorithm}›
text ‹This section introduces the inner algorithm (as mentioned it is already a solution to the
cardinality estimation with the caveat that, if $\varepsilon$ is too small it requires to much
space. The outer algorithm in Section~\ref{sec:outer_algorithm} resolved this problem.
The algorithm makes use of the balls and bins model, more precisely, the fact that the number of
hit bins can be used to estimate the number of balls thrown (even if there are collusions). I.e.
it assigns each universe element to a bin using a $k$-wise independent hash function. Then it
counts the number of bins hit.
This strategy however would only work if the number of balls is roughly equal to the number of
bins, to remedy that the algorithm performs an adaptive sub-sampling strategy. This works by
assigning each universe element a level (using a second hash function) with a geometric
distribution. The algorithm then selects a level that is appropriate based on a rough estimate
obtained using the maximum level in the bins.
To save space the algorithm drops information about small levels, whenever the space usage would
be too high otherwise. This level will be called the cutoff-level. This is okey as long as the
cutoff level is not larger than the sub-sampling threshold. A lot of the complexity in the
proof is devoted to verifying that the cutoff-level will not cross it, it works by defining a
third value @{term "s⇩M"} that is both an upper bound for the cutoff level and a lower bound for the
subsampling threshold simultaneously with high probability.›
theory Distributed_Distinct_Elements_Inner_Algorithm
imports
Universal_Hash_Families.Pseudorandom_Objects_Hash_Families
Distributed_Distinct_Elements_Preliminary
Distributed_Distinct_Elements_Balls_and_Bins
Distributed_Distinct_Elements_Tail_Bounds
Prefix_Free_Code_Combinators.Prefix_Free_Code_Combinators
begin
unbundle intro_cong_syntax
hide_const Abstract_Rewriting.restrict
definition C⇩4 :: real where "C⇩4 = 3^2*2^23"
definition C⇩5 :: int where "C⇩5 = 33"
definition C⇩6 :: real where "C⇩6 = 4"
definition C⇩7 :: nat where "C⇩7 = 2^5"
locale inner_algorithm =
fixes n :: nat
fixes δ :: real
fixes ε :: real
assumes n_gt_0: "n > 0"
assumes δ_gt_0: "δ > 0" and δ_lt_1: "δ < 1"
assumes ε_gt_0: "ε > 0" and ε_lt_1: "ε < 1"
begin
definition b_exp where "b_exp = nat ⌈log 2 (C⇩4 / ε^2)⌉"
definition b :: nat where "b = 2^b_exp"
definition l where "l = nat ⌈C⇩6 * ln (2/ δ)⌉"
definition k where "k = nat ⌈C⇩2*ln b + C⇩3⌉"
definition Λ :: real where "Λ = min (1/16) (exp (-l * ln l^3))"
definition ρ :: "real ⇒ real" where "ρ x = b * (1 - (1-1/b) powr x)"
definition ρ_inv :: "real ⇒ real" where "ρ_inv x = ln (1-x/b) / ln (1-1/b)"
lemma l_lbound: "C⇩6 * ln (2 / δ) ≤ l"
unfolding l_def by linarith
lemma k_min: "C⇩2 * ln (real b) + C⇩3 ≤ real k"
unfolding k_def by linarith
lemma Λ_gt_0: "Λ > 0"
unfolding Λ_def min_less_iff_conj by auto
lemma Λ_le_1: "Λ ≤ 1"
unfolding Λ_def by auto
lemma l_gt_0: "l > 0"
proof -
have "0 < C⇩6 * ln (2 / δ)"
unfolding C⇩6_def using δ_gt_0 δ_lt_1
by (intro Rings.mult_pos_pos ln_gt_zero) auto
also have "... ≤ l"
by (intro l_lbound)
finally show ?thesis
by simp
qed
lemma l_ubound: "l ≤ C⇩6 * ln(1 / δ)+C⇩6*ln 2 + 1"
proof -
have "l = of_int ⌈C⇩6 * ln (2/ δ)⌉"
using l_gt_0 unfolding l_def
by (intro of_nat_nat) simp
also have "... ≤ C⇩6 * ln (1/ δ*2)+1"
by simp
also have "... = C⇩6 * ln (1/ δ)+C⇩6 * ln 2+1"
using δ_gt_0 δ_lt_1
by (subst ln_mult) (auto simp add:algebra_simps)
finally show ?thesis by simp
qed
lemma b_exp_ge_26: "b_exp ≥ 26"
proof -
have "2 powr 25 < C⇩4 / 1 " unfolding C⇩4_def by simp
also have "... ≤ C⇩4 / ε^2"
using ε_gt_0 ε_lt_1 unfolding C⇩4_def
by (intro divide_left_mono power_le_one) auto
finally have "2 powr 25 < C⇩4 / ε^2" by simp
hence "log 2 (C⇩4 / ε^2) > 25"
using ε_gt_0 unfolding C⇩4_def
by (intro iffD2[OF less_log_iff] divide_pos_pos zero_less_power) auto
hence "⌈log 2 (C⇩4 / ε^2)⌉ ≥ 26" by simp
thus ?thesis
unfolding b_exp_def by linarith
qed
lemma b_min: "b ≥ 2^26"
unfolding b_def
by (meson b_exp_ge_26 nat_power_less_imp_less not_less power_eq_0_iff power_zero_numeral)
lemma k_gt_0: "k > 0"
proof -
have "(0::real) < 7.5 * 0 + 16" by simp
also have "... ≤ 7.5 * ln(real b) + 16"
using b_min
by (intro add_mono mult_left_mono ln_ge_zero) auto
finally have "0 < real k"
using k_min unfolding C⇩2_def C⇩3_def by simp
thus ?thesis by simp
qed
lemma b_ne: "{..<b} ≠ {}"
proof -
have "0 ∈ {0..<b}"
using b_min by simp
thus ?thesis
by auto
qed
lemma b_lower_bound: "C⇩4 / ε^2 ≤ real b"
proof -
have "C⇩4 / ε^2 = 2 powr (log 2 (C⇩4 / ε^2))"
using ε_gt_0 unfolding C⇩4_def by (intro powr_log_cancel[symmetric] divide_pos_pos) auto
also have "... ≤ 2 powr (nat ⌈log 2 (C⇩4 / ε^2)⌉)"
by (intro powr_mono of_nat_ceiling) simp
also have "... = real b"
unfolding b_def b_exp_def by (simp add:powr_realpow)
finally show ?thesis by simp
qed
definition n_exp where "n_exp = max (nat ⌈log 2 n⌉) 1"
lemma n_exp_gt_0: "n_exp > 0"
unfolding n_exp_def by simp
abbreviation Ψ⇩1 where "Ψ⇩1 ≡ ℋ 2 n (𝒢 n_exp)"
abbreviation Ψ⇩2 where "Ψ⇩2 ≡ ℋ 2 n (𝒩 (C⇩7*b⇧2))"
abbreviation Ψ⇩3 where "Ψ⇩3 ≡ ℋ k (C⇩7*b⇧2) (𝒩 b)"
definition Ψ where "Ψ = Ψ⇩1 ×⇩P Ψ⇩2 ×⇩P Ψ⇩3"
abbreviation Ω where "Ω ≡ ℰ l Λ Ψ"
type_synonym state = "(nat ⇒ nat ⇒ int) × (nat)"
fun is_too_large :: "(nat ⇒ nat ⇒ int) ⇒ bool" where
"is_too_large B = ((∑ (i,j) ∈ {..<l} × {..<b}. ⌊log 2 (max (B i j) (-1) + 2)⌋) > C⇩5 * b * l)"
fun compress_step :: "state ⇒ state" where
"compress_step (B,q) = (λ i j. max (B i j - 1) (-1), q+1)"
function compress :: "state ⇒ state" where
"compress (B,q) = (
if is_too_large B
then (compress (compress_step (B,q)))
else (B,q))"
by auto
fun compress_termination :: "state ⇒ nat" where
"compress_termination (B,q) = (∑ (i,j) ∈ {..<l} × {..<b}. nat (B i j + 1))"
lemma compress_termination:
assumes "is_too_large B"
shows "compress_termination (compress_step (B,q)) < compress_termination (B,q)"
proof (rule ccontr)
let ?I = "{..<l} × {..<b}"
have a: "nat (max (B i j - 1) (- 1) + 1) ≤ nat (B i j + 1)" for i j
by simp
assume "¬ compress_termination (compress_step (B, q)) < compress_termination (B, q)"
hence "(∑ (i,j) ∈ ?I. nat (B i j + 1)) ≤ (∑ (i,j) ∈ ?I. nat (max (B i j - 1) (-1) + 1))"
by simp
moreover have "(∑ (i,j) ∈ ?I. nat (B i j + 1)) ≥ (∑ (i,j) ∈ ?I. nat (max (B i j - 1) (-1) + 1))"
by (intro sum_mono) auto
ultimately have b:
"(∑ (i,j) ∈ ?I. nat (max (B i j - 1) (-1) + 1)) = (∑ (i,j) ∈ ?I. nat (B i j + 1))"
using order_antisym by simp
have "nat (B i j + 1) = nat (max (B i j - 1) (-1) + 1)" if "(i,j) ∈ ?I" for i j
using sum_mono_inv[OF b] that a by auto
hence "max (B i j) (-1) = -1" if "(i,j) ∈ ?I" for i j
using that by fastforce
hence "(∑(i,j) ∈ ?I. ⌊log 2 (max (B i j) (-1) + 2)⌋) = (∑(i,j) ∈ ?I. 0)"
by (intro sum.cong, auto)
also have "... = 0" by simp
also have "... ≤ C⇩5 * b * l" unfolding C⇩5_def by simp
finally have "¬ is_too_large B" by simp
thus "False" using assms by simp
qed
termination compress
using measure_def compress_termination
by (relation "Wellfounded.measure (compress_termination)", auto)
fun merge1 :: "state ⇒ state ⇒ state" where
"merge1 (B1,q⇩1) (B2, q⇩2) = (
let q = max q⇩1 q⇩2 in (λ i j. max (B1 i j + q⇩1 - q) (B2 i j + q⇩2 - q), q))"
fun merge :: "state ⇒ state ⇒ state" where
"merge x y = compress (merge1 x y)"
type_synonym seed = "nat ⇒ (nat ⇒ nat) × (nat ⇒ nat) × (nat ⇒ nat)"
fun single1 :: "seed ⇒ nat ⇒ state" where
"single1 ω x = (λ i j.
let (f,g,h) = ω i in (
if h (g x) = j ∧ i < l then int (f x) else (-1)), 0)"
fun single :: "seed ⇒ nat ⇒ state" where
"single ω x = compress (single1 ω x)"
fun estimate1 :: "state ⇒ nat ⇒ real" where
"estimate1 (B,q) i = (
let s = max 0 (Max ((B i) ` {..<b}) + q - ⌊log 2 b⌋ + 9);
p = card { j. j ∈ {..<b} ∧ B i j + q ≥ s } in
2 powr s * ln (1-p/b) / ln(1-1/b))"
fun estimate :: "state ⇒ real" where
"estimate x = median l (estimate1 x)"
subsection ‹History Independence›
fun τ⇩0 :: "((nat ⇒ nat) × (nat ⇒ nat) × (nat ⇒ nat)) ⇒ nat set ⇒ nat ⇒ int"
where "τ⇩0 (f,g,h) A j = Max ({ int (f a) | a . a ∈ A ∧ h (g a) = j } ∪ {-1}) "
definition τ⇩1 :: "((nat ⇒ nat) × (nat ⇒ nat) × (nat ⇒ nat)) ⇒ nat set ⇒ nat ⇒ nat ⇒ int"
where "τ⇩1 ψ A q j = max (τ⇩0 ψ A j - q) (-1)"
definition τ⇩2 :: "seed ⇒ nat set ⇒ nat ⇒ nat ⇒ nat ⇒ int"
where "τ⇩2 ω A q i j = (if i < l then τ⇩1 (ω i) A q j else (-1))"
definition τ⇩3 :: "seed ⇒ nat set ⇒ nat ⇒ state"
where "τ⇩3 ω A q = (τ⇩2 ω A q, q)"
definition q :: "seed ⇒ nat set ⇒ nat"
where "q ω A = (LEAST q . ¬(is_too_large (τ⇩2 ω A q)))"
definition τ :: "seed ⇒ nat set ⇒ state"
where "τ ω A = τ⇩3 ω A (q ω A)"
lemma τ⇩2_step: "τ⇩2 ω A (x+y) = (λi j. max (τ⇩2 ω A x i j - y) (- 1))"
by (intro ext) (auto simp add:τ⇩2_def τ⇩1_def)
lemma τ⇩3_step: "compress_step (τ⇩3 ω A x) = τ⇩3 ω A (x+1)"
unfolding τ⇩3_def using τ⇩2_step[where y="1"] by simp
lemma Ψ⇩1: "is_prime_power (pro_size (𝒢 n_exp))"
unfolding geom_pro_size by (intro is_prime_powerI n_exp_gt_0) auto
lemma Ψ⇩2: "is_prime_power (pro_size (𝒩 (C⇩7 * b^2)))"
proof -
have 0:"pro_size (𝒩 (C⇩7 * b^2)) = 2 ^ (5 + 2 * b_exp)"
unfolding C⇩7_def b_def by (subst nat_pro_size) (auto simp add: power_add power_even_eq)
thus ?thesis unfolding 0 by (intro is_prime_powerI) auto
qed
lemma Ψ⇩3: "is_prime_power (pro_size (𝒩 b))"
proof -
have 0:"pro_size (𝒩 b) = 2 ^ b_exp" unfolding b_def by (subst nat_pro_size) auto
thus ?thesis using b_exp_ge_26 unfolding 0 by (intro is_prime_powerI) auto
qed
lemma sample_pro_Ψ:
"sample_pro Ψ = pair_pmf (sample_pro Ψ⇩1) (pair_pmf (sample_pro Ψ⇩2) (sample_pro Ψ⇩3))"
unfolding Ψ_def by (simp add:prod_pro)
lemma sample_set_Ψ: "pro_set Ψ = pro_set Ψ⇩1 × pro_set Ψ⇩2 × pro_set Ψ⇩3"
unfolding Ψ_def by (simp add:prod_pro_set)
lemma f_range:
assumes "(f,g,h) ∈ pro_set Ψ"
shows "f x ≤ n_exp"
proof -
have "f ∈ pro_set Ψ⇩1" using sample_set_Ψ assms by auto
hence "f ∈ pro_select Ψ⇩1 ` {..<pro_size Ψ⇩1}" unfolding set_sample_pro by auto
hence "f x ∈ pro_set (𝒢 n_exp)" using hash_pro_range[OF Ψ⇩1] by auto
thus ?thesis using geom_pro_range by auto
qed
lemma g_range_1:
assumes "g ∈ pro_set Ψ⇩2"
shows "g x < C⇩7*b^2"
proof -
have "g ∈ pro_select Ψ⇩2 ` {..<pro_size Ψ⇩2}" using assms unfolding set_sample_pro by auto
hence "g x ∈ pro_set (𝒩 ( C⇩7*b^2))" using hash_pro_range[OF Ψ⇩2] by auto
moreover have "C⇩7*b^2 > 0" unfolding C⇩7_def b_def by simp
ultimately show ?thesis using nat_pro_set by auto
qed
lemma h_range_1:
assumes "h ∈ pro_set Ψ⇩3"
shows "h x < b"
proof -
have "h ∈ pro_select Ψ⇩3 ` {..<pro_size Ψ⇩3}" using assms unfolding set_sample_pro by auto
hence "h x ∈ pro_set (𝒩 b)" using hash_pro_range[OF Ψ⇩3] by auto
moreover have "b > 0" unfolding b_def by simp
ultimately show ?thesis using nat_pro_set by auto
qed
lemma g_range:
assumes "(f,g,h) ∈ pro_set Ψ"
shows "g x < C⇩7*b^2"
using g_range_1 sample_set_Ψ assms by simp
lemma h_range:
assumes "(f,g,h) ∈ pro_set Ψ"
shows "h x < b"
using h_range_1 sample_set_Ψ assms by simp
lemma fin_f:
assumes "(f,g,h) ∈ pro_set Ψ"
shows "finite { int (f a) | a. P a }" (is "finite ?M")
proof -
have "finite (range f)"
using f_range[OF assms] finite_nat_set_iff_bounded_le by auto
hence "finite (range (int ∘ f))"
by (simp add:image_image[symmetric])
moreover have "?M ⊆ (range (int ∘ f))"
using image_mono by (auto simp add: setcompr_eq_image)
ultimately show ?thesis
using finite_subset by auto
qed
lemma Max_int_range: "x ≤ (y::int) ⟹ Max {x..y} = y"
by auto
lemma Ω: "l > 0" "Λ > 0" using l_gt_0 Λ_gt_0 by auto
lemma ω_range:
assumes "ω ∈ pro_set Ω"
shows "ω i ∈ pro_set Ψ"
proof -
have "ω ∈ pro_select Ω ` {..<pro_size Ω}" using assms unfolding set_sample_pro by auto
thus "ω i ∈ pro_set Ψ" using expander_pro_range[OF Ω] assms by auto
qed
lemma max_q_1:
assumes "ω ∈ pro_set Ω"
shows "τ⇩2 ω A (nat ⌈log 2 n⌉+2) i j = (-1)"
proof (cases "i < l")
case True
obtain f g h where w_i: "ω i = (f,g,h)" by (metis prod_cases3)
let ?max_q = "max ⌈log 2 (real n)⌉ 1"
have c: "(f,g,h) ∈ pro_set Ψ" using ω_range[OF assms] w_i[symmetric] by auto
have a:"int (f x) ≤ ?max_q" for x
proof -
have "int (f x) ≤ int n_exp"
using f_range[OF c] by auto
also have "... = ?max_q" unfolding n_exp_def by simp
finally show ?thesis by simp
qed
have "τ⇩0 (ω i) A j ≤ Max {(-1)..?max_q}"
unfolding w_i τ⇩0.simps using a by (intro Max_mono) auto
also have "... = ?max_q"
by (intro Max_int_range) auto
finally have "τ⇩0 (ω i) A j ≤ ?max_q" by simp
hence "max (τ⇩0 (ω i) A j - int (nat ⌈log 2 (real n)⌉ + 2)) (- 1) = (-1)"
by (intro max_absorb2) linarith
thus ?thesis
unfolding τ⇩2_def τ⇩1_def using True by auto
next
case False
thus ?thesis unfolding τ⇩2_def τ⇩1_def by simp
qed
lemma max_q_2:
assumes "ω ∈ pro_set Ω"
shows "¬ (is_too_large (τ⇩2 ω A (nat ⌈log 2 n⌉+2)))"
using max_q_1[OF assms] by (simp add:C⇩5_def case_prod_beta mult_less_0_iff)
lemma max_s_3:
assumes "ω ∈ pro_set Ω"
shows "q ω A ≤ (nat ⌈log 2 n⌉+2)"
unfolding q_def by (intro wellorder_Least_lemma(2) max_q_2 assms)
lemma max_mono: "x ≤ (y::'a::linorder) ⟹ max x z ≤ max y z"
using max.coboundedI1 by auto
lemma max_mono_2: "y ≤ (z::'a::linorder) ⟹ max x y ≤ max x z"
using max.coboundedI2 by auto
lemma τ⇩0_mono:
assumes "ψ ∈ pro_set Ψ"
assumes "A ⊆ B"
shows "τ⇩0 ψ A j ≤ τ⇩0 ψ B j"
proof -
obtain f g h where w_i: "ψ = (f,g,h)"
by (metis prod_cases3)
show ?thesis
using assms fin_f unfolding τ⇩0.simps w_i
by (intro Max_mono) auto
qed
lemma τ⇩2_mono:
assumes "ω ∈ pro_set Ω"
assumes "A ⊆ B"
shows "τ⇩2 ω A x i j ≤ τ⇩2 ω B x i j"
proof -
have "max (τ⇩0 (ω i) A j - int x) (- 1) ≤ max (τ⇩0 (ω i) B j - int x) (- 1)" if "i < l"
using that ω_range[OF assms(1)] by (intro max_mono diff_mono τ⇩0_mono assms(2) order.refl)
thus ?thesis by (cases "i < l") (auto simp add:τ⇩2_def τ⇩1_def)
qed
lemma is_too_large_antimono:
assumes "ω ∈ pro_set Ω"
assumes "A ⊆ B"
assumes "is_too_large (τ⇩2 ω A x)"
shows "is_too_large (τ⇩2 ω B x)"
proof -
have "C⇩5 * b * l < (∑ (i,j) ∈ {..<l} × {..<b}. ⌊log 2 (max (τ⇩2 ω A x i j) (-1) + 2)⌋)"
using assms(3) by simp
also have "... = (∑ y ∈ {..<l} × {..<b}. ⌊log 2 (max (τ⇩2 ω A x (fst y) (snd y)) (-1) + 2)⌋)"
by (simp add:case_prod_beta)
also have "... ≤ (∑ y ∈ {..<l} × {..<b}. ⌊log 2 (max (τ⇩2 ω B x (fst y) (snd y)) (-1) + 2)⌋)"
by (intro sum_mono floor_mono iffD2[OF log_le_cancel_iff] iffD2[OF of_int_le_iff]
add_mono max_mono τ⇩2_mono[OF assms(1,2)]) auto
also have "... = (∑ (i,j) ∈ {..<l} × {..<b}. ⌊log 2 (max (τ⇩2 ω B x i j) (-1) + 2)⌋)"
by (simp add:case_prod_beta)
finally have "(∑ (i,j) ∈ {..<l} × {..<b}. ⌊log 2 (max (τ⇩2 ω B x i j) (-1) + 2)⌋) > C⇩5 * b * l"
by simp
thus ?thesis by simp
qed
lemma q_compact:
assumes "ω ∈ pro_set Ω"
shows "¬ (is_too_large (τ⇩2 ω A (q ω A)))"
unfolding q_def using max_q_2[OF assms]
by (intro wellorder_Least_lemma(1)) blast
lemma q_mono:
assumes "ω ∈ pro_set Ω"
assumes "A ⊆ B"
shows "q ω A ≤ q ω B"
proof -
have "¬ (is_too_large (τ⇩2 ω A (q ω B)))"
using is_too_large_antimono[OF assms] q_compact[OF assms(1)] by blast
hence "(LEAST q . ¬(is_too_large (τ⇩2 ω A q))) ≤ q ω B"
by (intro Least_le) blast
thus ?thesis
by (simp add:q_def)
qed
lemma lt_s_too_large: "x < q ω A ⟹ is_too_large (τ⇩2 ω A x)"
using not_less_Least unfolding q_def by auto
lemma compress_result_1:
assumes "ω ∈ pro_set Ω"
shows "compress (τ⇩3 ω A (q ω A - i)) = τ ω A"
proof (induction i)
case 0
then show ?case using q_compact[OF assms] by (simp add:τ⇩3_def τ_def)
next
case (Suc i)
show ?case
proof (cases "i < q ω A")
case True
have "is_too_large (τ⇩2 ω A (q ω A - Suc i))"
using True by (intro lt_s_too_large) simp
hence "compress (τ⇩3 ω A (q ω A - Suc i)) = compress (compress_step (τ⇩3 ω A (q ω A - Suc i)))"
unfolding τ⇩3_def compress.simps
by (simp del: compress.simps compress_step.simps)
also have "... = compress (τ⇩3 ω A ((q ω A - Suc i)+1))"
by (subst τ⇩3_step) blast
also have "... = compress (τ⇩3 ω A (q ω A - i))"
using True by (metis Suc_diff_Suc Suc_eq_plus1)
also have "... = τ ω A" using Suc by auto
finally show ?thesis by simp
next
case False
then show ?thesis using Suc by simp
qed
qed
lemma compress_result:
assumes "ω ∈ pro_set Ω"
assumes "x ≤ q ω A"
shows "compress (τ⇩3 ω A x) = τ ω A"
proof -
obtain i where i_def: "x = q ω A - i" using assms by (metis diff_diff_cancel)
have "compress (τ⇩3 ω A x) = compress (τ⇩3 ω A (q ω A - i))"
by (subst i_def) blast
also have "... = τ ω A"
using compress_result_1[OF assms(1)] by blast
finally show ?thesis by simp
qed
lemma τ⇩0_merge:
assumes "(f,g,h) ∈ pro_set Ψ"
shows "τ⇩0 (f,g,h) (A ∪ B) j = max (τ⇩0 (f,g,h) A j) (τ⇩0 (f,g,h) B j)" (is "?L = ?R")
proof-
let ?f = "λa. int (f a)"
have "?L = Max (({ int (f a) | a . a ∈ A ∧ h (g a) = j } ∪ {-1}) ∪
({ int (f a) | a . a ∈ B ∧ h (g a) = j } ∪ {-1}))"
unfolding τ⇩0.simps
by (intro arg_cong[where f="Max"]) auto
also have "... = max (Max ({ int (f a) | a . a ∈ A ∧ h (g a) = j } ∪ {-1}))
(Max ({ int (f a) | a . a ∈ B ∧ h (g a) = j } ∪ {-1}))"
by (intro Max_Un finite_UnI fin_f[OF assms]) auto
also have "... = ?R"
by (simp)
finally show ?thesis by simp
qed
lemma τ⇩2_merge:
assumes "ω ∈ pro_set Ω"
shows "τ⇩2 ω (A ∪ B) x i j = max (τ⇩2 ω A x i j) (τ⇩2 ω B x i j)"
proof (cases "i < l")
case True
obtain f g h where w_i: "ω i = (f,g,h)" by (metis prod_cases3)
have a: "(f,g,h) ∈ pro_set Ψ" using w_i[symmetric] ω_range[OF assms(1)] by auto
show ?thesis
unfolding τ⇩2_def τ⇩1_def
using True by (simp add:w_i τ⇩0_merge[OF a] del:τ⇩0.simps)
next
case False
thus ?thesis by (simp add:τ⇩2_def)
qed
lemma merge1_result:
assumes "ω ∈ pro_set Ω"
shows "merge1 (τ ω A) (τ ω B) = τ⇩3 ω (A ∪ B) (max (q ω A) (q ω B))"
proof -
let ?qmax = "max (q ω A) (q ω B)"
obtain u where u_def: "q ω A + u = ?qmax"
by (metis add.commute max.commute nat_minus_add_max)
obtain v where v_def: "q ω B + v = ?qmax"
by (metis add.commute nat_minus_add_max)
have "u = 0 ∨ v = 0" using u_def v_def by linarith
moreover have "τ⇩2 ω A (q ω A) i j - u ≥ (-1)" if "u = 0" for i j
using that by (simp add:τ⇩2_def τ⇩1_def)
moreover have "τ⇩2 ω B (q ω B) i j - v ≥ (-1)" if "v = 0" for i j
using that by (simp add:τ⇩2_def τ⇩1_def)
ultimately have a:"max (τ⇩2 ω A (q ω A) i j - u) (τ⇩2 ω B (q ω B) i j - v) ≥ (-1)" for i j
unfolding le_max_iff_disj by blast
have "τ⇩2 ω (A ∪ B) ?qmax = (λ i j. max (τ⇩2 ω A ?qmax i j) (τ⇩2 ω B ?qmax i j))"
using τ⇩2_merge[OF assms] by blast
also have "... = (λ i j. max (τ⇩2 ω A (q ω A + u) i j) (τ⇩2 ω B (q ω B + v) i j))"
unfolding u_def v_def by blast
also have "... = (λ i j. max (max (τ⇩2 ω A (q ω A) i j - u) (-1)) (max (τ⇩2 ω B (q ω B) i j - v) (-1)))"
by (simp only: τ⇩2_step)
also have "... = (λ i j. max (max (τ⇩2 ω A (q ω A) i j - u) (τ⇩2 ω B (q ω B) i j - v)) (-1))"
by (metis (no_types, opaque_lifting) max.commute max.left_commute max.left_idem)
also have "... = (λ i j. max (τ⇩2 ω A (q ω A) i j - u) (τ⇩2 ω B (q ω B) i j - v))"
using a by simp
also have "... = (λi j. max (τ⇩2 ω A (q ω A) i j + int (q ω A) - ?qmax)
(τ⇩2 ω B (q ω B) i j + int (q ω B) - ?qmax))"
by (subst u_def[symmetric], subst v_def[symmetric]) simp
finally have "τ⇩2 ω (A ∪ B) (max (q ω A) (q ω B)) =
(λi j. max (τ⇩2 ω A (q ω A) i j + int (q ω A) - int (?qmax))
(τ⇩2 ω B (q ω B) i j + int (q ω B) - int (?qmax)))" by simp
thus ?thesis
by (simp add:Let_def τ_def τ⇩3_def)
qed
lemma merge_result:
assumes "ω ∈ pro_set Ω"
shows "merge (τ ω A) (τ ω B) = τ ω (A ∪ B)" (is "?L = ?R")
proof -
have a:"max (q ω A) (q ω B) ≤ q ω (A ∪ B)"
using q_mono[OF assms] by simp
have "?L = compress (merge1 (τ ω A) (τ ω B))"
by simp
also have "... = compress ( τ⇩3 ω (A ∪ B) (max (q ω A) (q ω B)))"
by (subst merge1_result[OF assms]) blast
also have "... = ?R"
by (intro compress_result[OF assms] a Un_least)
finally show ?thesis by blast
qed
lemma single1_result: "single1 ω x = τ⇩3 ω {x} 0"
proof -
have "(case ω i of (f, g, h) ⇒ if h (g x) = j ∧ i < l then int (f x) else - 1) = τ⇩2 ω {x} 0 i j"
for i j
proof -
obtain f g h where w_i:"ω i = (f, g,h)" by (metis prod_cases3)
show ?thesis
by (simp add:w_i τ⇩2_def τ⇩1_def)
qed
thus ?thesis
unfolding τ⇩3_def by fastforce
qed
lemma single_result:
assumes "ω ∈ pro_set Ω"
shows "single ω x = τ ω {x}" (is "?L = ?R")
proof -
have "?L = compress (single1 ω x)"
by (simp)
also have "... = compress (τ⇩3 ω {x} 0)"
by (subst single1_result) blast
also have "... = ?R"
by (intro compress_result[OF assms]) auto
finally show ?thesis by blast
qed
subsection ‹Encoding states of the inner algorithm›
definition is_state_table :: "(nat × nat ⇒ int) ⇒ bool" where
"is_state_table g = (range g ⊆ {-1..} ∧ g ` (-({..<l} × {..<b})) ⊆ {-1})"
text ‹Encoding for state table values:›
definition V⇩e :: "int encoding"
where "V⇩e x = (if x ≥ -1 then N⇩e (nat (x+1)) else None)"
text ‹Encoding for state table:›
definition T⇩e' :: "(nat × nat ⇒ int) encoding" where
"T⇩e' g = (
if is_state_table g
then (List.product [0..<l] [0..<b] →⇩e V⇩e) (restrict g ({..<l}×{..<b}))
else None)"
definition T⇩e :: "(nat ⇒ nat ⇒ int) encoding"
where "T⇩e f = T⇩e' (case_prod f)"
definition encode_state :: "state encoding"
where "encode_state = T⇩e ×⇩e Nb⇩e (nat ⌈log 2 n⌉+3)"
lemma inj_on_restrict:
assumes "B ⊆ {f. f ` (- A) ⊆ {c}}"
shows "inj_on (λx. restrict x A) B"
proof (rule inj_onI)
fix f g assume a:"f ∈ B" "g ∈ B" "restrict f A = restrict g A"
have "f x = g x" if "x ∈ A" for x
by (intro restrict_eq_imp[OF a(3) that])
moreover have "f x = g x" if "x ∉ A" for x
proof -
have "f x = c" "g x = c"
using that a(1,2) assms(1) by auto
thus ?thesis by simp
qed
ultimately show "f = g"
by (intro ext) auto
qed
lemma encode_state: "is_encoding encode_state"
proof -
have "is_encoding V⇩e"
unfolding V⇩e_def
by (intro encoding_compose[OF exp_golomb_encoding] inj_onI) auto
hence 0:"is_encoding (List.product [0..<l] [0..<b] →⇩e V⇩e)"
by (intro fun_encoding)
have "is_encoding T⇩e'"
unfolding T⇩e'_def is_state_table_def
by (intro encoding_compose[OF 0] inj_on_restrict[where c="-1"]) auto
moreover have " inj case_prod"
by (intro injI) (metis curry_case_prod)
ultimately have "is_encoding T⇩e"
unfolding T⇩e_def by (rule encoding_compose_2)
thus ?thesis
unfolding encode_state_def
by (intro dependent_encoding bounded_nat_encoding)
qed
lemma state_bit_count:
assumes "ω ∈ pro_set Ω"
shows "bit_count (encode_state (τ ω A)) ≤ 2^36 * (ln(1/δ)+1)/ ε^2 + log 2 (log 2 n + 3)"
(is "?L ≤ ?R")
proof -
define t where "t = τ⇩2 ω A (q ω A)"
have "log 2 (real n) ≥ 0"
using n_gt_0 by simp
hence 0: "- 1 < log 2 (real n)"
by simp
have "t x y = -1" if "x < l" "y ≥ b" for x y
proof -
obtain f g h where ω_def: "ω x = (f,g,h)"
by (metis prod_cases3)
have "(f, g, h) ∈ pro_set Ψ"
using ω_range[OF assms] unfolding Pi_def ω_def[symmetric] by auto
hence "h (g a) < b" for a
using h_range by auto
hence "y ≠ h (g a)" for a
using that(2) not_less by blast
hence aux_4: "{int (f a) |a. a ∈ A ∧ h (g a) = y} = {}"
by auto
hence "max (Max (insert (- 1) {int (f a) |a. a ∈ A ∧ h (g a) = y}) - int (q ω A)) (- 1) = - 1"
unfolding aux_4 by simp
thus ?thesis
unfolding t_def τ⇩2_def τ⇩1_def by (simp add:ω_def)
qed
moreover have "t x y = -1" if "x ≥ l" for x y
using that unfolding t_def τ⇩2_def τ⇩1_def by simp
ultimately have 1: "t x y = -1" if "x ≥ l ∨ y ≥ b" for x y
using that by (meson not_less)
have 2: "t x y ≥ -1" for x y
unfolding t_def τ⇩2_def τ⇩1_def by simp
hence 3: "t x y + 1 ≥ 0" for x y
by (metis add.commute le_add_same_cancel1 minus_add_cancel)
have 4:"is_state_table (case_prod t)"
using 2 1 unfolding is_state_table_def by auto
have "bit_count(T⇩e (τ⇩2 ω A (q ω A))) = bit_count(T⇩e t)"
unfolding t_def by simp
also have "... = bit_count ((List.product [0..<l] [0..<b] →⇩e V⇩e) (λ(x, y)∈{..<l}×{..<b}. t x y))"
using 4 unfolding T⇩e_def T⇩e'_def by simp
also have "... =
(∑x←List.product [0..<l] [0..<b]. bit_count (V⇩e ((λ(x, y)∈{..<l} × {..<b}. t x y) x)))"
using restrict_extensional atLeast0LessThan by (simp add:fun_bit_count)
also have "... = (∑(x,y)←List.product [0..<l] [0..<b]. bit_count (V⇩e (t x y)))"
by (intro arg_cong[where f="sum_list"] map_cong refl)
(simp add:atLeast0LessThan case_prod_beta)
also have "... = (∑x∈{0..<l} × {0..<b}. bit_count (V⇩e (t (fst x) (snd x))))"
by (subst sum_list_distinct_conv_sum_set)
(auto intro:distinct_product simp add:case_prod_beta)
also have "... = (∑x∈{..<l} × {..<b}. bit_count ( N⇩e (nat (t (fst x) (snd x)+1))))"
using 2 unfolding V⇩e_def not_less[symmetric]
by (intro sum.cong refl arg_cong[where f="bit_count"]) auto
also have "...=(∑x∈{..<l}×{..<b}. 1+2* of_int⌊log 2(1+real(nat(t (fst x)(snd x)+1)))⌋)"
unfolding exp_golomb_bit_count_exact is_too_large.simps not_less by simp
also have "...=(∑x∈{..<l}×{..<b}. 1+2* of_int⌊log 2(2+ of_int(t (fst x)(snd x)))⌋)"
using 3 by (subst of_nat_nat) (auto simp add:ac_simps)
also have "...=b*l + 2* of_int (∑(i,j)∈{..<l}×{..<b}. ⌊log 2(2+ of_int(max (t i j) (-1)))⌋)"
using 2 by (subst max_absorb1) (auto simp add:case_prod_beta sum.distrib sum_distrib_left)
also have "... ≤ b*l + 2 * of_int (C⇩5 * int b * int l)"
using q_compact[OF assms, where A="A"] unfolding is_too_large.simps not_less t_def[symmetric]
by (intro add_mono ereal_mono iffD2[OF of_int_le_iff] mult_left_mono order.refl)
(simp_all add:ac_simps)
also have "... = (2 * C⇩5 + 1) * b * l"
by (simp add:algebra_simps)
finally have 5:"bit_count (T⇩e (τ⇩2 ω A (q ω A))) ≤ (2 * C⇩5 + 1) * b * l"
by simp
have "C⇩4 ≥ 1"
unfolding C⇩4_def by simp
moreover have "ε⇧2 ≤ 1"
using ε_lt_1 ε_gt_0
by (intro power_le_one) auto
ultimately have "0 ≤ log 2 (C⇩4 / ε⇧2)"
using ε_gt_0 ε_lt_1
by (intro iffD2[OF zero_le_log_cancel_iff] divide_pos_pos)auto
hence 6: "- 1 < log 2 (C⇩4 / ε⇧2)"
by simp
have "b = 2 powr (real (nat ⌈log 2 (C⇩4 / ε⇧2)⌉))"
unfolding b_def b_exp_def by (simp add:powr_realpow)
also have "... = 2 powr (⌈log 2 (C⇩4 / ε^2)⌉)"
using 6 by (intro arg_cong2[where f="(powr)"] of_nat_nat refl) simp
also have "... ≤ 2 powr (log 2 (C⇩4 / ε^2) + 1)"
by (intro powr_mono) auto
also have "... = 2 * C⇩4 / ε^2"
using ε_gt_0 unfolding powr_add C⇩4_def
by (subst powr_log_cancel) (auto intro:divide_pos_pos)
finally have 7:"b ≤ 2 * C⇩4 / ε^2" by simp
have "l ≤ C⇩6 * ln (1 / δ) + C⇩6 * ln 2 + 1"
by (intro l_ubound)
also have "... ≤ 4 * ln(1/δ) + 3+1"
unfolding C⇩6_def by (intro add_mono order.refl) (approximation 5)
also have "... = 4 * (ln(1/δ)+1)"
by simp
finally have 8:"l ≤ 4 * (ln(1/δ)+1)"
by simp
have "ε⇧2 = 0 + ε⇧2"
by simp
also have "... ≤ ln (1 / δ) + 1"
using δ_gt_0 δ_lt_1 ε_gt_0 ε_lt_1
by (intro add_mono power_le_one) auto
finally have 9: "ε⇧2 ≤ ln (1 / δ) + 1"
by simp
have 10: "0 ≤ ln (1 / δ) + 1"
using δ_gt_0 δ_lt_1 by (intro add_nonneg_nonneg) auto
have "?L = bit_count (T⇩e (τ⇩2 ω A (q ω A))) + bit_count (Nb⇩e (nat ⌈log 2 (real n)⌉+3) (q ω A))"
unfolding encode_state_def τ_def τ⇩3_def by (simp add:dependent_bit_count)
also have "...=bit_count(T⇩e(τ⇩2 ω A (q ω A)))+ereal (1+ of_int⌊log 2 (2 + real (nat ⌈log 2 n⌉))⌋)"
using max_s_3[OF assms] by (subst bounded_nat_bit_count_2)
(simp_all add:numeral_eq_Suc le_imp_less_Suc floorlog_def)
also have "... = bit_count(T⇩e(τ⇩2 ω A (q ω A)))+ereal (1+ of_int⌊log 2 (2 + of_int ⌈log 2 n⌉)⌋)"
using 0 by simp
also have "... ≤ bit_count(T⇩e(τ⇩2 ω A (q ω A)))+ereal (1+log 2 (2 + of_int ⌈log 2 n⌉))"
by (intro add_mono ereal_mono) simp_all
also have "... ≤ bit_count(T⇩e(τ⇩2 ω A (q ω A)))+ereal (1+log 2 (2 + (log 2 n + 1)))"
using 0 n_gt_0 by (intro add_mono ereal_mono iffD2[OF log_le_cancel_iff] add_pos_nonneg) auto
also have "... = bit_count(T⇩e(τ⇩2 ω A (q ω A)))+ereal (1+log 2 (log 2 n + 3))"
by (simp add:ac_simps)
also have "... ≤ ereal ((2 * C⇩5 + 1) * b * l) + ereal (1+log 2 (log 2 n + 3))"
by (intro add_mono 5) auto
also have "... = (2 * C⇩5 + 1) * real b * real l + log 2 (log 2 n + 3) + 1"
by simp
also have "... ≤ (2 * C⇩5 + 1) * (2 * C⇩4 / ε^2) * real l + log 2 (log 2 n + 3) + 1"
unfolding C⇩5_def
by (intro ereal_mono mult_right_mono mult_left_mono add_mono 7) auto
also have "... = (4 * of_int C⇩5+2)*C⇩4*real l/ ε^2 + log 2 (log 2 n + 3) + 1"
by simp
also have "... ≤ (4 * of_int C⇩5+2)*C⇩4*(4*(ln(1/ δ)+1))/ ε^2 + log 2 (log 2 n + 3) + 1"
using ε_gt_0 unfolding C⇩5_def C⇩4_def
by (intro ereal_mono add_mono order.refl divide_right_mono mult_left_mono 8) auto
also have "... = ((2*33+1)*9*2^26)*(ln(1/ δ)+1)/ ε^2 + log 2 (log 2 n + 3) + 1"
unfolding C⇩5_def C⇩4_def by simp
also have "... ≤ (2^36-1) * (ln(1/δ)+1)/ ε^2 + log 2 (log 2 n + 3) + (ln (1/ δ)+1)/ ε^2"
using ε_gt_0 δ_gt_0 ε_lt_1 9 10
by (intro add_mono ereal_mono divide_right_mono mult_right_mono mult_left_mono) simp_all
also have "... = 2^36* (ln(1/δ)+1)/ ε^2 + log 2 (log 2 n + 3)"
by (simp add:divide_simps)
finally show ?thesis
by simp
qed
lemma random_bit_count:
"pro_size Ω ≤ 2 powr (4 * log 2 n + 48 * (log 2 (1 / ε) + 16)^2 + (55 + 60 * ln (1 / δ))^3)"
(is "?L ≤ ?R")
proof -
have 1:"log 2 (real n) ≥ 0"
using n_gt_0 by simp
hence 0: "- 1 < log 2 (real n)"
by simp
have 10: "log 2 C⇩4 ≤ 27"
unfolding C⇩4_def by (approximation 10)
have "ε⇧2 ≤ 1"
using ε_gt_0 ε_lt_1 by (intro power_le_one) auto
also have "... ≤ C⇩4"
unfolding C⇩4_def by simp
finally have " ε⇧2 ≤ C⇩4" by simp
hence 9: "0 ≤ log 2 (C⇩4 / ε⇧2)"
using ε_gt_0 unfolding C⇩4_def
by (intro iffD2[OF zero_le_log_cancel_iff]) simp_all
hence 2: "- 1 < log 2 (C⇩4 / ε⇧2)"
by simp
have 3: "0 < C⇩7 * b⇧2" unfolding C⇩7_def using b_min by (intro Rings.mult_pos_pos) auto
have "0 ≤ log 2 (real C⇩7) + real (b_exp * 2)"
unfolding C⇩7_def by (intro add_nonneg_nonneg) auto
hence 4: "-1 < log 2 (real C⇩7) + real (b_exp * 2)" by simp
have "(2, n_exp) = split_power (pro_size (𝒢 n_exp))"
unfolding geom_pro_size by (intro split_power_prime[symmetric] n_exp_gt_0) auto
hence "real (pro_size Ψ⇩1) = real (2 ^ (2 * max n_exp (nat ⌈log (real 2) (real n)⌉)))"
by (intro arg_cong[where f="real"] hash_pro_size'[OF Ψ⇩1 n_gt_0])
also have "... = 2 ^ (2 * max n_exp (nat ⌈log 2 (real n)⌉))" by simp
also have "... = 2 ^ (2 * max 1 (nat ⌈log 2 (real n)⌉))" unfolding n_exp_def by simp
also have "... ≤ 2 powr (2 * max (nat ⌈log 2 (real n)⌉) 1)"
by (subst powr_realpow) auto
also have "... = 2 powr (2 * max (real (nat ⌈log 2 (real n)⌉)) 1)"
using n_gt_0 unfolding of_nat_mult of_nat_max by simp
also have "... = 2 powr (2 * max (of_int ⌈log 2 (real n)⌉) 1)"
using 0 by (subst of_nat_nat) simp_all
also have "... ≤ 2 powr (2 * max (log 2 (real n) + 1) 1)"
by (intro powr_mono mult_left_mono max_mono) auto
also have "... = 2 powr (2 * (log 2 (real n) + 1))"
using 1 by (subst max_absorb1) auto
finally have 5:"real (pro_size Ψ⇩1) ≤ 2 powr (2 * log 2 n + 2)"
by simp
have "(2, 5 + b_exp * 2) = split_power (2^(5+b_exp*2))"
by (intro split_power_prime[symmetric]) auto
also have "... = split_power (C⇩7 * b⇧2)"
unfolding C⇩7_def b_def power_mult[symmetric] power_add by simp
also have "... = split_power (pro_size (𝒩 (C⇩7 * b⇧2)))"
unfolding C⇩7_def b_def by (subst nat_pro_size) auto
finally have "(2, 5 + b_exp * 2) = split_power (pro_size (𝒩 (C⇩7 * b⇧2)))" by simp
hence "real (pro_size Ψ⇩2) = real (2 ^ (2 * max (5 + b_exp * 2) (nat ⌈log (real 2) (real n)⌉)))"
by (intro arg_cong[where f="real"] hash_pro_size'[OF Ψ⇩2 n_gt_0])
also have "... = 2 ^ (max (5 + b_exp * 2) (nat ⌈log 2 (real n)⌉) * 2)" by simp
also have "... ≤ 2 ^ (((5 + b_exp * 2) + (nat ⌈log 2 (real n)⌉)) * 2)"
by (intro power_increasing mult_right_mono) auto
also have "... = 2 powr ((5 + b_exp * 2 + real (nat ⌈log 2 (real n)⌉))*2)"
by (subst powr_realpow[symmetric]) auto
also have "... = 2 powr ((5 + of_int b_exp * 2 + of_int ⌈log 2 (real n)⌉)*2)"
using 0 by (subst of_nat_nat) auto
also have "... ≤ 2 powr ((5 + of_int b_exp * 2 + (log 2 (real n) + 1))*2)"
by (intro powr_mono mult_right_mono add_mono) simp_all
also have "... = 2 powr (12 + 4 * real( nat ⌈log 2 (C⇩4 / ε⇧2)⌉) + log 2 (real n) * 2)"
unfolding b_exp_def by (simp add:ac_simps)
also have "... = 2 powr (12 + 4 * real_of_int ⌈log 2 (C⇩4 / ε⇧2)⌉ + log 2 (real n) * 2)"
using 2 by (subst of_nat_nat) simp_all
also have "... ≤ 2 powr (12 + 4 * (log 2 (C⇩4 / ε⇧2) + 1) + log 2 (real n) * 2)"
by (intro powr_mono add_mono order.refl mult_left_mono) simp_all
also have "... = 2 powr (2 * log 2 n + 4 * log 2 (C⇩4 / ε⇧2) + 16)"
by (simp add:ac_simps)
finally have 6:"real (pro_size Ψ⇩2) ≤ 2 powr (2 * log 2 n + 4 * log 2 (C⇩4 / ε⇧2) + 16)"
by simp
have "(2, b_exp) = split_power (2 ^ b_exp)"
using b_exp_ge_26 by (intro split_power_prime[symmetric]) auto
also have "... = split_power (pro_size (𝒩 b))"
unfolding b_def by (subst nat_pro_size) auto
finally have "(2, b_exp) = split_power (pro_size (𝒩 b))" by simp
hence "real (pro_size Ψ⇩3) = real (2 ^ (k * max b_exp (nat ⌈log (real 2) (real (C⇩7*b^2))⌉)))"
by (intro arg_cong[where f="real"] hash_pro_size'[OF Ψ⇩3]) (simp_all add:C⇩7_def b_def)
also have "... = 2 ^ (k * max b_exp (nat ⌈log 2 (real C⇩7 * (2 ^ (b_exp*2)))⌉))"
unfolding b_def power_mult by simp
also have "... = 2 ^ (max b_exp (nat ⌈log 2 C⇩7 + log 2 (2 ^ (b_exp*2))⌉) * k)"
unfolding C⇩7_def by (subst log_mult) simp_all
also have "... = 2 ^ (max b_exp (nat ⌈log 2 C⇩7 + (b_exp*2)⌉) * k)"
by (subst log_nat_power) simp_all
also have "... = 2 powr (max (real b_exp) (real (nat ⌈log 2 C⇩7 + (b_exp*2)⌉)) * real k)"
by (subst powr_realpow[symmetric]) simp_all
also have "... = 2 powr (max (real b_exp) (of_int ⌈log 2 C⇩7 + (b_exp*2)⌉) * real k)"
using 4 by (subst of_nat_nat) simp_all
also have "... ≤ 2 powr (max (real b_exp) (log 2 C⇩7 + real b_exp*2 +1) * real k)"
by (intro powr_mono mult_right_mono max_mono_2) simp_all
also have "... = 2 powr ((log 2 (2^5) + real b_exp*2 +1) * real k)"
unfolding C⇩7_def by (subst max_absorb2) simp_all
also have "... = 2 powr ((real b_exp*2 +6) * real k)"
unfolding C⇩7_def by (subst log_nat_power) (simp_all add:ac_simps)
also have "... = 2 powr ((of_int ⌈log 2 (C⇩4 / ε⇧2)⌉ * 2 + 6) * real k)"
using 2 unfolding b_exp_def by (subst of_nat_nat) simp_all
also have "... ≤ 2 powr (((log 2 (C⇩4 / ε^2)+1) * 2 + 6) * real k)"
by (intro powr_mono mult_right_mono add_mono) simp_all
also have "... = 2 powr ((log 2 (C⇩4 / ε⇧2) * 2 + 8 ) * real k)"
by (simp add:ac_simps)
finally have 7:"real (pro_size Ψ⇩3) ≤ 2 powr ((log 2 (C⇩4 / ε⇧2) * 2 + 8 ) * real k)"
by simp
have "ln (real b) ≥ 0"
using b_min by simp
hence "real k = of_int ⌈7.5 * ln (real b) + 16⌉"
unfolding k_def C⇩2_def C⇩3_def by (subst of_nat_nat) simp_all
also have "... ≤ (7.5 * ln (real b) + 16) + 1"
unfolding b_def by (intro of_int_ceiling_le_add_one)
also have "... = 7.5 * ln (2 powr b_exp) + 17"
unfolding b_def using powr_realpow by simp
also have "... = real b_exp * (7.5 * ln 2) + 17"
unfolding powr_def by simp
also have "... ≤ real b_exp * 6 + 17"
by (intro add_mono mult_left_mono order.refl of_nat_0_le_iff) (approximation 5)
also have "... = of_int ⌈log 2 (C⇩4 / ε⇧2)⌉ * 6 + 17"
using 2 unfolding b_exp_def by (subst of_nat_nat) simp_all
also have "... ≤ (log 2 (C⇩4 / ε^2) + 1) * 6 + 17"
by (intro add_mono mult_right_mono) simp_all
also have "... = 6 * log 2 (C⇩4 / ε^2) + 23"
by simp
finally have 8:"real k ≤ 6 * log 2 (C⇩4 / ε^2) + 23"
by simp
have "real (pro_size Ψ) = real (pro_size Ψ⇩1) * real (pro_size Ψ⇩2) * real (pro_size Ψ⇩3)"
unfolding Ψ_def prod_pro_size by simp
also have "... ≤
2 powr(2*log 2 n+2)*2 powr (2*log 2 n+4*log 2 (C⇩4/ε⇧2)+16)*2 powr((log 2 (C⇩4/ε⇧2)*2+8)*real k)"
by (intro mult_mono 5 6 7 mult_nonneg_nonneg) simp_all
also have "... = 2 powr (2*log 2 n + 2 + 2 * log 2 n+4*log 2 (C⇩4/ε⇧2)+16+(log 2 (C⇩4/ε⇧2)*2+8)*real k)"
unfolding powr_add by simp
also have "... = 2 powr (4*log 2 n + 4*log 2 (C⇩4/ε⇧2) + 18 + (2*log 2 (C⇩4/ε⇧2)+8)*real k)"
by (simp add:ac_simps)
also have "... ≤
2 powr (4* log 2 n + 4* log 2 (C⇩4/ ε^2) + 18 + (2*log 2 (C⇩4/ε⇧2)+8)*(6 * log 2 (C⇩4 / ε^2) + 23))"
using 9 by (intro powr_mono add_mono order.refl mult_left_mono 8 add_nonneg_nonneg) simp_all
also have "... = 2 powr (4 * log 2 n+12 * log 2 (C⇩4 / ε^2)^2 + 98 * log 2 (C⇩4 / ε^2)+202)"
by (simp add:algebra_simps power2_eq_square)
also have "... ≤ 2 powr (4 * log 2 n+12 * log 2 (C⇩4 / ε^2)^2 + 120 * log 2 (C⇩4 / ε^2)+300)"
using 9 by (intro powr_mono add_mono order.refl mult_right_mono) simp_all
also have "... = 2 powr (4 * log 2 n+12 * (log 2 (C⇩4* (1/ ε)^2) + 5)^2)"
by (simp add:power2_eq_square algebra_simps)
also have "... = 2 powr (4 * log 2 n + 12 * (log 2 C⇩4 + log 2 ((1 / ε)^2) + 5)^2)"
unfolding C⇩4_def using ε_gt_0 by (subst log_mult) auto
also have "... ≤ 2 powr (4 * log 2 n + 12 * (27 + log 2 ((1/ ε)^2) + 5)^2)"
using ε_gt_0 ε_lt_1
by (intro powr_mono add_mono order.refl mult_left_mono power_mono add_nonneg_nonneg 10)
(simp_all add:C⇩4_def)
also have "... = 2 powr (4 * log 2 n + 12 * (2 * (log 2 (1 / ε) + 16))^2)"
using ε_gt_0 by (subst log_nat_power) (simp_all add:ac_simps)
also have "... = 2 powr (4 * log 2 n + 48 * (log 2 (1 / ε) + 16)^2)"
unfolding power_mult_distrib by simp
finally have 19:"real (pro_size Ψ) ≤ 2 powr (4 * log 2 n + 48 * (log 2 (1 / ε) + 16)^2)"
by simp
have "0 ≤ ln Λ / ln (19 / 20)"
using Λ_gt_0 Λ_le_1 by (intro divide_nonpos_neg) simp_all
hence 11: "-1 < ln Λ / ln (19 / 20)" by simp
have 12: "ln (19 / 20) ≤ -(0.05::real)" "- ln (1 / 16) ≤ (2.8::real)" by (approximation 10)+
have 13: "ln l ≥ 0" using l_gt_0 by auto
have "ln l^3 = 27 * (0 + ln l/3)^3" by (simp add:power3_eq_cube)
also have "... ≤ 27 * (1 + ln l/real 3)^3"
using l_gt_0 by (intro mult_left_mono add_mono power_mono) auto
also have "... ≤ 27 * (exp (ln l))"
using l_gt_0 13 by (intro mult_left_mono exp_ge_one_plus_x_over_n_power_n) linarith+
also have "... = 27 * real l" using l_gt_0 by (subst exp_ln) auto
finally have 14:"ln l^3 ≤ 27 * real l" by simp
have 15:"C⇩6 * ln (2 / δ) > 0"
using δ_lt_1 δ_gt_0 unfolding C⇩6_def
by (intro Rings.mult_pos_pos ln_gt_zero) auto
hence "1 ≤ real_of_int ⌈C⇩6 * ln (2 / δ)⌉" by simp
hence 16: "1 ≤ 3 * real_of_int ⌈C⇩6 * ln (2 / δ)⌉" by argo
have 17: "12 * ln 2 ≤ (9::real)" by (approximation 5)
have "16 ^ ((l - 1) * nat⌈ln Λ / ln 0.95⌉) = 16 powr (real (l-1)*real(nat ⌈ln Λ / ln (19 / 20)⌉))"
by (subst powr_realpow[symmetric]) auto
also have "... = 16 powr (real (l-1)* of_int ⌈ln Λ / ln (19 / 20)⌉)"
using 11 by (subst of_nat_nat) simp_all
also have "... ≤ 16 powr (real (l-1)* (ln Λ / ln (19/20)+1))"
by (intro powr_mono mult_left_mono) auto
also have "... = 16 powr ((real l - 1)*(ln Λ / ln (19/20)+1))"
using l_gt_0 by (subst of_nat_diff) auto
also have "... ≤ 16 powr ((real l - 1)*(ln Λ / (-0.05)+1))"
using l_gt_0 Λ_gt_0 Λ_le_1
by (intro powr_mono mult_left_mono add_mono divide_left_mono_neg 12) auto
also have "... = 16 powr ((real l - 1)*(20 * (-ln Λ)+1))"
by (simp add:algebra_simps)
also have "... = 16 powr ((real l - 1)*(20 * -(min (ln (1/16)) (-l*ln l^3))+1))"
unfolding Λ_def by (subst ln_min_swap) auto
also have "... = 16 powr ((real l - 1)*(20 * max (-ln (1/16)) (l*ln l^3)+1))"
by (intro_cong "[σ⇩2 (powr), σ⇩2(+), σ⇩2 (*)]") simp
also have "... ≤ 16 powr ((real l - 1)*(20 * max (2.8) (l*ln l^3)+1))"
using l_gt_0 by (intro powr_mono mult_left_mono add_mono max_mono 12) auto
also have "... ≤ 16 powr ((real l - 1)*(20 * (2.8+l*ln l^3)+1))"
using l_gt_0 by (intro powr_mono mult_left_mono add_mono) auto
also have "... = 16 powr ((real l - 1)*(20 * (l*ln l^3)+57))"
by (simp add:algebra_simps)
also have "... ≤ 16 powr ((real l - 1)*(20 * (real l*(27*real l))+57))"
using l_gt_0 by (intro powr_mono mult_left_mono add_mono 14) auto
also have "... = 16 powr (540 * real l^3 - 540 * real l^2 + 57* real l - 57)"
by (simp add:algebra_simps numeral_eq_Suc)
also have "... ≤ 16 powr (540 * real l^3 - 540 * real l^2 + 180* real l - 20)"
by (intro powr_mono add_mono diff_mono order.refl mult_right_mono) auto
also have "... = 16 powr (20 * (3*real l - 1)^3)"
by (simp add: algebra_simps power3_eq_cube power2_eq_square)
also have "... = 16 powr (20 * (3 * of_int ⌈C⇩6 * ln (2 / δ)⌉ - 1) ^ 3)"
using 15 unfolding l_def by (subst of_nat_nat) auto
also have "... ≤ 16 powr (20 * (3 * (C⇩6 * ln (2 / δ) + 1) - 1) ^ 3)"
using 16 by (intro powr_mono mult_left_mono power_mono diff_mono) auto
also have "... = 16 powr (20 * (2 + 12 * ln (2 * (1 / δ))) ^ 3)"
by (simp add:algebra_simps C⇩6_def)
also have "... = (2 powr 4) powr (20 * (2+ 12 * (ln 2 + ln(1/ δ)))^3)"
using δ_gt_0 by (subst ln_mult) auto
also have "... = 2 powr (80 * (2 + 12 * ln 2 + 12 * ln (1 / δ)) ^ 3)"
unfolding powr_powr by (simp add:ac_simps)
also have "... ≤ 2 powr (80 * (2 + 9 + 12 * ln (1 / δ)) ^ 3)"
using δ_gt_0 δ_lt_1
by (intro powr_mono mult_left_mono power_mono add_mono 17 add_nonneg_nonneg) auto
also have "... = 2 powr (80 * (11 + 12 * ln (1 / δ)) ^ 3)" by simp
also have "... ≤ 2 powr (5^3 * (11 + 12 * ln (1 / δ)) ^ 3)"
using δ_gt_0 δ_lt_1 by (intro powr_mono mult_right_mono) (auto intro!:add_nonneg_nonneg)
also have "... = 2 powr ((55 + 60 * ln (1 / δ))^3)"
unfolding power_mult_distrib[symmetric] by simp
finally have 18:"16^((l - 1) * nat⌈ln Λ / ln (19/20)⌉) ≤ 2 powr ((55 + 60 * ln (1 / δ))^3)"
by simp
have "?L = real (pro_size Ψ) * 16 ^ ((l - 1) * nat ⌈ln Λ / ln (19 / 20)⌉)"
unfolding expander_pro_size[OF Ω] by simp
also have "... ≤ 2 powr (4*log 2 n+48*(log 2 (1/ε)+16)^2)*2 powr ((55 + 60 * ln (1 / δ))^3)"
by (intro mult_mono 18 19) simp_all
also have "... = 2 powr (4 * log 2 n + 48 * (log 2 (1 / ε) + 16)^2 + (55 + 60 * ln (1 / δ))^3)"
unfolding powr_add[symmetric] by simp
finally show ?thesis by simp
qed
end
unbundle no_intro_cong_syntax
end