Theory Weight
section "Weights for Dijkstra's Algorithm"
theory Weight
imports Complex_Main
begin
text ‹
In this theory, we set up a type class for weights, and
a typeclass for weights with an infinity element. The latter
one is used internally in Dijkstra's algorithm.
Moreover, we provide a datatype that adds an infinity element to a given
base type.
›
subsection ‹Type Classes Setup›
class weight = ordered_ab_semigroup_add + comm_monoid_add + linorder
begin
lemma add_nonneg_nonneg [simp]:
assumes "0 ≤ a" and "0 ≤ b" shows "0 ≤ a + b"
proof -
have "0 + 0 ≤ a + b"
using assms by (rule add_mono)
then show ?thesis by simp
qed
lemma add_nonpos_nonpos[simp]:
assumes "a ≤ 0" and "b ≤ 0" shows "a + b ≤ 0"
proof -
have "a + b ≤ 0 + 0"
using assms by (rule add_mono)
then show ?thesis by simp
qed
lemma add_nonneg_eq_0_iff:
assumes x: "0 ≤ x" and y: "0 ≤ y"
shows "x + y = 0 ⟷ x = 0 ∧ y = 0"
by (metis local.add_0_left local.add_0_right local.add_left_mono local.antisym_conv x y)
lemma add_incr: "0≤b ⟹ a ≤ a+b"
by (metis add.comm_neutral add_left_mono)
lemma add_incr_left[simp, intro!]: "0≤b ⟹ a ≤ b + a"
by (metis add_incr add.commute)
lemma sum_not_less[simp, intro!]:
"0≤b ⟹ ¬ (a+b < a)"
"0≤a ⟹ ¬ (a+b < b)"
apply (metis add_incr less_le_not_le)
apply (metis add_incr_left less_le_not_le)
done
end
instance nat :: weight ..
instance int :: weight ..
instance rat :: weight ..
instance real :: weight ..
term top
class top_weight = order_top + weight +
assumes inf_add_right[simp]: "a + top = top"
begin
lemma inf_add_left[simp]: "top + a = top"
by (metis add.commute inf_add_right)
lemmas [simp] = top_unique less_top[symmetric]
lemma not_less_inf[simp]:
"¬ (a < top) ⟷ a=top"
by simp
end
subsection ‹Adding Infinity›
text ‹
We provide a standard way to add an infinity element to any type.
›