Theory Native_Word.Code_Target_Word_Base
chapter ‹Common base for target language implementations of word types›
theory Code_Target_Word_Base
imports
"HOL-Library.Word"
"Word_Lib.Signed_Division_Word"
"Word_Lib.More_Word"
begin
subsection ‹More on conversions›
lemma int_of_integer_unsigned_eq [simp]:
‹int_of_integer (unsigned w) = uint w›
by transfer simp
lemma int_of_integer_signed_eq [simp]:
‹int_of_integer (signed w) = sint w›
by transfer simp
abbreviation word_of_integer :: ‹integer ⇒ 'a::len word›
where ‹word_of_integer k ≡ word_of_int (int_of_integer k)›
subsection ‹Quickcheck conversion functions›
context
includes state_combinator_syntax
begin
definition qc_random_cnv ::
"(natural ⇒ 'a::term_of) ⇒ natural ⇒ Random.seed
⇒ ('a × (unit ⇒ Code_Evaluation.term)) × Random.seed"
where "qc_random_cnv a_of_natural i = Random.range (i + 1) ∘→ (λk. Pair (
let n = a_of_natural k
in (n, λ_. Code_Evaluation.term_of n)))"
end
definition qc_exhaustive_cnv :: "(natural ⇒ 'a) ⇒ ('a ⇒ (bool × term list) option)
⇒ natural ⇒ (bool × term list) option"
where
"qc_exhaustive_cnv a_of_natural f d =
Quickcheck_Exhaustive.exhaustive (%x. f (a_of_natural x)) d"
definition qc_full_exhaustive_cnv ::
"(natural ⇒ ('a::term_of)) ⇒ ('a × (unit ⇒ term) ⇒ (bool × term list) option)
⇒ natural ⇒ (bool × term list) option"
where
"qc_full_exhaustive_cnv a_of_natural f d = Quickcheck_Exhaustive.full_exhaustive
(%(x, xt). f (a_of_natural x, %_. Code_Evaluation.term_of (a_of_natural x))) d"
declare [[quickcheck_narrowing_ghc_options = "-XTypeSynonymInstances"]]
definition qc_narrowing_drawn_from :: "'a list ⇒ integer ⇒ _"
where
"qc_narrowing_drawn_from xs =
foldr Quickcheck_Narrowing.sum (map Quickcheck_Narrowing.cons (butlast xs)) (Quickcheck_Narrowing.cons (last xs))"
locale quickcheck_narrowing_samples =
fixes a_of_integer :: "integer ⇒ 'a × 'a :: {partial_term_of, term_of}"
and zero :: "'a"
and tr :: "typerep"
begin
function narrowing_samples :: "integer ⇒ 'a list"
where
"narrowing_samples i =
(if i > 0 then let (a, a') = a_of_integer i in narrowing_samples (i - 1) @ [a, a'] else [zero])"
by pat_completeness auto
termination including integer.lifting
proof(relation "measure nat_of_integer")
fix i :: integer
assume "0 < i"
thus "(i - 1, i) ∈ measure nat_of_integer"
by simp(transfer, simp)
qed simp
definition partial_term_of_sample :: "integer ⇒ 'a"
where
"partial_term_of_sample i =
(if i < 0 then undefined
else if i = 0 then zero
else if i mod 2 = 0 then snd (a_of_integer (i div 2))
else fst (a_of_integer (i div 2 + 1)))"
lemma partial_term_of_code:
"partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_variable p t) ≡
Code_Evaluation.Free (STR ''_'') tr"
"partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_constructor i []) ≡
Code_Evaluation.term_of (partial_term_of_sample i)"
by (rule partial_term_of_anything)+
end
lemmas [code] =
quickcheck_narrowing_samples.narrowing_samples.simps
quickcheck_narrowing_samples.partial_term_of_sample_def
subsection ‹More on division›
lemma div_half_nat:
fixes x y :: nat
assumes "y ≠ 0"
shows "(x div y, x mod y) = (let q = 2 * (x div 2 div y); r = x - q * y in if y ≤ r then (q + 1, r - y) else (q, r))"
proof -
let ?q = "2 * (x div 2 div y)"
have q: "?q = x div y - x div y mod 2"
by(metis div_mult2_eq mult.commute minus_mod_eq_mult_div [symmetric])
let ?r = "x - ?q * y"
have r: "?r = x mod y + x div y mod 2 * y"
by(simp add: q diff_mult_distrib minus_mod_eq_div_mult [symmetric])(metis diff_diff_cancel mod_less_eq_dividend mod_mult2_eq add.commute mult.commute)
show ?thesis
proof(cases "y ≤ x - ?q * y")
case True
with assms q have "x div y mod 2 ≠ 0" unfolding r
by (metis Nat.add_0_right diff_0_eq_0 diff_Suc_1 le_div_geq mod2_gr_0 mod_div_trivial mult_0 neq0_conv numeral_1_eq_Suc_0 numerals(1))
hence "x div y = ?q + 1" unfolding q
by simp
moreover hence "x mod y = ?r - y"
by simp(metis minus_div_mult_eq_mod [symmetric] diff_commute diff_diff_left mult_Suc)
ultimately show ?thesis using True by(simp add: Let_def)
next
case False
hence "x div y mod 2 = 0" unfolding r
by(simp add: not_le)(metis Nat.add_0_right assms div_less div_mult_self2 mod_div_trivial mult.commute)
hence "x div y = ?q" unfolding q by simp
moreover hence "x mod y = ?r" by (metis minus_div_mult_eq_mod [symmetric])
ultimately show ?thesis using False by(simp add: Let_def)
qed
qed
lemma div_half_word:
fixes x y :: "'a :: len word"
assumes "y ≠ 0"
shows "(x div y, x mod y) = (let q = push_bit 1 (drop_bit 1 x div y); r = x - q * y in if y ≤ r then (q + 1, r - y) else (q, r))"
proof -
obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)"
by (rule that [of ‹unat x›]) simp_all
moreover obtain m where m: "y = of_nat m" "m < 2 ^ LENGTH('a)"
by (rule that [of ‹unat y›]) simp_all
ultimately have [simp]: ‹unat (of_nat n :: 'a word) = n› ‹unat (of_nat m :: 'a word) = m›
by (transfer, simp add: take_bit_of_nat take_bit_nat_eq_self_iff)+
let ?q = "push_bit 1 (drop_bit 1 x div y)"
let ?q' = "2 * (n div 2 div m)"
have "n div 2 div m < 2 ^ LENGTH('a)"
using n by (metis of_nat_inverse uno_simps(2) unsigned_less)
hence q: "?q = of_nat ?q'" using n m
by (auto simp add: drop_bit_eq_div word_arith_nat_div uno_simps take_bit_nat_eq_self unsigned_of_nat)
from assms have "m ≠ 0" using m by -(rule notI, simp)
from n have "2 * (n div 2 div m) < 2 ^ LENGTH('a)"
by (metis mult.commute div_mult2_eq minus_mod_eq_mult_div [symmetric] less_imp_diff_less of_nat_inverse unsigned_less uno_simps(2))
moreover
have "2 * (n div 2 div m) * m < 2 ^ LENGTH('a)" using n unfolding div_mult2_eq[symmetric]
by(subst (2) mult.commute)(simp add: minus_mod_eq_div_mult [symmetric] diff_mult_distrib minus_mod_eq_mult_div [symmetric] div_mult2_eq)
moreover have "2 * (n div 2 div m) * m ≤ n"
by (simp flip: div_mult2_eq ac_simps)
ultimately
have r: "x - ?q * y = of_nat (n - ?q' * m)"
and "y ≤ x - ?q * y ⟹ of_nat (n - ?q' * m) - y = of_nat (n - ?q' * m - m)"
using n m unfolding q
apply (simp_all add: of_nat_diff)
apply (subst of_nat_diff)
apply (cases ‹LENGTH('a) ≥ 2›)
apply (simp_all add: word_le_nat_alt take_bit_nat_eq_self unat_sub_if' unat_word_ariths unsigned_of_nat)
done
then show ?thesis using n m div_half_nat [OF ‹m ≠ 0›, of n] unfolding q
by (simp add: word_le_nat_alt word_div_def word_mod_def Let_def take_bit_nat_eq_self unsigned_of_nat
flip: zdiv_int zmod_int
split del: if_split split: if_split_asm)
qed
text ‹Division on @{typ "'a word"} is unsigned, but Scala and OCaml only have signed division and modulus.›
lemma [code]:
"x sdiv y =
(let x' = sint x; y' = sint y;
negative = (x' < 0) ≠ (y' < 0);
result = abs x' div abs y'
in word_of_int (if negative then -result else result))"
for x y :: ‹'a::len word›
by (simp add: sdiv_word_def signed_divide_int_def sgn_if Let_def not_less not_le)
lemma [code]:
"x smod y =
(let x' = sint x; y' = sint y;
negative = (x' < 0);
result = abs x' mod abs y'
in word_of_int (if negative then -result else result))"
for x y :: ‹'a::len word›
proof -
have *: ‹k mod l = k - k div l * l› for k l :: int
by (simp add: minus_div_mult_eq_mod)
show ?thesis
by (simp add: smod_word_def signed_modulo_int_def signed_divide_int_def * sgn_if Let_def)
qed
text ‹
This algorithm implements unsigned division in terms of signed division.
Taken from Hacker's Delight.
›
lemma divmod_via_sdivmod:
fixes x y :: "'a :: len word"
assumes "y ≠ 0"
shows
"(x div y, x mod y) =
(if push_bit (LENGTH('a) - 1) 1 ≤ y then if x < y then (0, x) else (1, x - y)
else let q = (push_bit 1 (drop_bit 1 x sdiv y));
r = x - q * y
in if r ≥ y then (q + 1, r - y) else (q, r))"
proof (cases "push_bit (LENGTH('a) - 1) 1 ≤ y")
case True
note y = this
show ?thesis
proof (cases "x < y")
case True
with y show ?thesis
by (simp add: word_div_less mod_word_less)
next
case False
obtain n where n: "y = of_nat n" "n < 2 ^ LENGTH('a)"
by (rule that [of ‹unat y›]) simp_all
have "unat x < 2 ^ LENGTH('a)" by (rule unsigned_less)
also have "… = 2 * 2 ^ (LENGTH('a) - 1)"
by(metis Suc_pred len_gt_0 power_Suc One_nat_def)
also have "… ≤ 2 * n" using y n
by transfer (simp add: take_bit_eq_mod)
finally have div: "x div of_nat n = 1" using False n
by (simp add: take_bit_nat_eq_self unsigned_of_nat word_div_eq_1_iff)
moreover have "x mod y = x - x div y * y"
by (simp add: minus_div_mult_eq_mod)
with div n have "x mod y = x - y" by simp
ultimately show ?thesis using False y n by simp
qed
next
case False
note y = this
obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)"
by (rule that [of ‹unat x›]) simp_all
hence "int n div 2 + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)"
by (cases ‹LENGTH('a)›)
(auto dest: less_imp_of_nat_less [where ?'a = int])
with y n have "sint (drop_bit 1 x) = uint (drop_bit 1 x)"
by (cases ‹LENGTH('a)›)
(auto simp add: sint_uint drop_bit_eq_div take_bit_nat_eq_self uint_div_distrib
signed_take_bit_int_eq_self_iff unsigned_of_nat)
moreover have "uint y + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)"
using y by (cases ‹LENGTH('a)›)
(simp_all add: not_le word_less_alt uint_power_lower)
then have "sint y = uint y"
apply (cases ‹LENGTH('a)›)
apply (auto simp add: sint_uint signed_take_bit_int_eq_self_iff)
using uint_ge_0 [of y]
by linarith
ultimately show ?thesis using y
apply (subst div_half_word [OF assms])
apply (simp add: sdiv_word_def signed_divide_int_def flip: uint_div)
done
qed
subsection ‹More on misc operations›
context
includes bit_operations_syntax
begin
lemma word_of_int_code:
"uint (word_of_int x :: 'a word) = x AND mask (LENGTH('a :: len))"
by (simp add: unsigned_of_int take_bit_eq_mask)
lemma word_and_mask_or_conv_and_mask:
"bit n index ⟹ (n AND mask index) OR (push_bit index 1) = n AND mask (index + 1)"
for n :: ‹'a::len word›
by (rule bit_eqI) (auto simp add: bit_simps)
lemma uint_and_mask_or_full:
fixes n :: "'a :: len word"
assumes "bit n (LENGTH('a) - 1)"
and "mask1 = mask (LENGTH('a) - 1)"
and "mask2 = push_bit (LENGTH('a) - 1) 1"
shows "uint (n AND mask1) OR mask2 = uint n"
proof -
have "mask2 = uint (push_bit (LENGTH('a) - 1) 1 :: 'a word)" using assms
by transfer (simp add: take_bit_push_bit)
hence "uint (n AND mask1) OR mask2 = uint (n AND mask1 OR (push_bit (LENGTH('a) - 1) 1 :: 'a word))"
by(simp add: uint_or)
also have "… = uint (n AND mask (LENGTH('a) - 1 + 1))"
using assms by(simp only: word_and_mask_or_conv_and_mask)
also have "… = uint n" by simp
finally show ?thesis .
qed
lemma word_of_int_via_signed:
fixes mask
assumes mask_def: "mask = Bit_Operations.mask LENGTH('a)"
and shift_def: "shift = push_bit LENGTH('a) 1"
and index_def: "index = LENGTH('a) - 1"
and overflow_def:"overflow = push_bit (LENGTH('a) - 1) 1"
and least_def: "least = - overflow"
shows
"(word_of_int i :: 'a :: len word) =
(let i' = i AND mask
in if bit i' index then
if i' - shift < least ∨ overflow ≤ i' - shift then arbitrary1 i' else word_of_int (i' - shift)
else if i' < least ∨ overflow ≤ i' then arbitrary2 i' else word_of_int i')"
proof -
define i' where "i' = i AND mask"
have "shift = mask + 1" unfolding assms
by (simp add: mask_eq_exp_minus_1)
hence "i' < shift"
by (simp add: mask_def i'_def)
show ?thesis
proof(cases "bit i' index")
case True
then have unf: "i' = overflow OR i'"
apply (simp add: assms i'_def flip: take_bit_eq_mask)
apply (rule bit_eqI)
apply (auto simp add: bit_take_bit_iff bit_or_iff bit_exp_iff)
done
have ‹overflow ≤ overflow OR i'›
by (simp add: i'_def mask_def or_greater_eq)
then have "overflow ≤ i'"
by (subst unf)
hence "i' - shift < least ⟷ False" unfolding assms
by(cases "LENGTH('a)")(simp_all add: not_less)
moreover
have "overflow ≤ i' - shift ⟷ False" using ‹i' < shift› unfolding assms
by(cases "LENGTH('a)")(auto simp add: not_le elim: less_le_trans)
moreover
have "word_of_int (i' - shift) = (word_of_int i :: 'a word)" using ‹i' < shift›
by (simp add: i'_def shift_def mask_def word_of_int_eq_iff flip: take_bit_eq_mask)
ultimately show ?thesis using True by(simp add: Let_def i'_def)
next
case False
have "i' = i AND Bit_Operations.mask (LENGTH('a) - 1)"
apply (rule bit_eqI)
apply (use False in ‹auto simp add: bit_simps assms i'_def›)
apply (auto simp add: less_le)
done
also have "… ≤ Bit_Operations.mask (LENGTH('a) - 1)"
using AND_upper2 mask_nonnegative_int by blast
also have "… < overflow"
by (simp add: mask_int_def overflow_def)
also
have "least ≤ 0" unfolding least_def overflow_def by simp
have "0 ≤ i'" by (simp add: i'_def mask_def)
hence "least ≤ i'" using ‹least ≤ 0› by simp
moreover
have "word_of_int i' = (word_of_int i :: 'a word)"
by (simp add: i'_def mask_def of_int_and_eq of_int_mask_eq)
ultimately show ?thesis using False by(simp add: Let_def i'_def)
qed
qed
end
subsection ‹Code generator setup›
text ‹
The separate code target ‹SML_word› collects setups for the
code generator that PolyML does not provide.
›
setup ‹Code_Target.add_derived_target ("SML_word", [(Code_ML.target_SML, I)])›
code_identifier code_module Code_Target_Word_Base ⇀
(SML) Word and (Haskell) Word and (OCaml) Word and (Scala) Word
text ‹Misc›
lemmas word_sdiv_def = sdiv_word_def
lemmas word_smod_def = smod_word_def
end