Theory N_Semirings_Boolean
section ‹Boolean N-Semirings›
theory N_Semirings_Boolean
imports N_Semirings
begin
class an =
fixes an :: "'a ⇒ 'a"
class an_semiring = bounded_idempotent_left_zero_semiring + L + n + an + uminus +
assumes an_complement: "an(x) ⊔ n(x) = 1"
assumes an_dist_sup : "an(x ⊔ y) = an(x) * an(y)"
assumes an_export : "an(an(x) * y) = n(x) ⊔ an(y)"
assumes an_mult_zero : "an(x) = an(x * bot)"
assumes an_L_split : "x * n(y) * L = x * bot ⊔ n(x * y) * L"
assumes an_split : "an(x * L) * x ≤ x * bot"
assumes an_uminus : "-x = an(x * L)"
begin
text ‹Theorem 21›
lemma n_an_def:
"n(x) = an(an(x) * L)"
by (metis an_dist_sup an_export an_split bot_least mult_right_isotone semiring.add_nonneg_eq_0_iff sup.orderE top_greatest vector_bot_closed)
text ‹Theorem 21›
lemma an_complement_bot:
"an(x) * n(x) = bot"
by (metis an_dist_sup an_split bot_least le_iff_sup mult_left_zero sup_commute n_an_def)
text ‹Theorem 21›
lemma an_n_def:
"an(x) = n(an(x) * L)"
by (smt (verit, ccfv_threshold) an_complement_bot an_complement mult.right_neutral mult_left_dist_sup mult_right_dist_sup sup_commute n_an_def)
lemma an_case_split_left:
"an(z) * x ≤ y ∧ n(z) * x ≤ y ⟷ x ≤ y"
by (metis le_sup_iff an_complement mult_left_one mult_right_dist_sup)
lemma an_case_split_right:
"x * an(z) ≤ y ∧ x * n(z) ≤ y ⟷ x ≤ y"
by (metis le_sup_iff an_complement mult_1_right mult_left_dist_sup)
lemma split_sub:
"x * y ≤ z ⊔ x * top"
by (simp add: le_supI2 mult_right_isotone)
text ‹Theorem 21›
subclass n_semiring
apply unfold_locales
apply (metis an_dist_sup an_split mult_left_zero sup.absorb2 sup_bot_left sup_commute n_an_def)
apply (metis sup_left_top an_complement an_dist_sup an_export mult_assoc n_an_def)
apply (metis an_dist_sup an_export mult_assoc n_an_def)
apply (metis an_dist_sup an_export an_n_def mult_right_dist_sup n_an_def)
apply (metis sup_idem an_dist_sup an_mult_zero n_an_def)
apply (simp add: an_L_split)
by (meson an_case_split_left an_split le_supI1 split_sub)
lemma n_complement_bot:
"n(x) * an(x) = bot"
by (metis an_complement_bot an_n_def n_an_def)
lemma an_bot:
"an(bot) = 1"
by (metis sup_bot_right an_complement n_bot)
lemma an_one:
"an(1) = 1"
by (metis sup_bot_right an_complement n_one)
lemma an_L:
"an(L) = bot"
using an_one n_one n_an_def by auto
lemma an_top:
"an(top) = bot"
by (metis mult_left_one n_complement_bot n_top)
lemma an_export_n:
"an(n(x) * y) = an(x) ⊔ an(y)"
by (metis an_export an_n_def n_an_def)
lemma n_export_an:
"n(an(x) * y) = an(x) * n(y)"
by (metis an_n_def n_export)
lemma n_an_mult_commutative:
"n(x) * an(y) = an(y) * n(x)"
by (metis sup_commute an_dist_sup n_an_def)
lemma an_mult_commutative:
"an(x) * an(y) = an(y) * an(x)"
by (metis sup_commute an_dist_sup)
lemma an_mult_idempotent:
"an(x) * an(x) = an(x)"
by (metis sup_idem an_dist_sup)
lemma an_sub_one:
"an(x) ≤ 1"
using an_complement sup.cobounded1 by fastforce
text ‹Theorem 21›
lemma an_antitone:
"x ≤ y ⟹ an(y) ≤ an(x)"
by (metis an_n_def an_dist_sup n_order sup.absorb1)
lemma an_mult_left_upper_bound:
"an(x * y) ≤ an(x)"
by (metis an_antitone an_mult_zero mult_right_isotone bot_least)
lemma an_mult_right_zero:
"an(x) * bot = bot"
by (metis an_n_def n_mult_right_bot)
lemma n_mult_an:
"n(x * an(y)) = n(x)"
by (metis an_n_def n_mult_n)
lemma an_mult_n:
"an(x * n(y)) = an(x)"
by (metis an_n_def n_an_def n_mult_n)
lemma an_mult_an:
"an(x * an(y)) = an(x)"
by (metis an_mult_n an_n_def)
lemma an_mult_left_absorb_sup:
"an(x) * (an(x) ⊔ an(y)) = an(x)"
by (metis an_n_def n_mult_left_absorb_sup)
lemma an_mult_right_absorb_sup:
"(an(x) ⊔ an(y)) * an(y) = an(y)"
by (metis an_n_def n_mult_right_absorb_sup)
lemma an_sup_left_absorb_mult:
"an(x) ⊔ an(x) * an(y) = an(x)"
using an_case_split_right sup_absorb1 by blast
lemma an_sup_right_absorb_mult:
"an(x) * an(y) ⊔ an(y) = an(y)"
using an_case_split_left sup_absorb2 by blast
lemma an_sup_left_dist_mult:
"an(x) ⊔ an(y) * an(z) = (an(x) ⊔ an(y)) * (an(x) ⊔ an(z))"
by (metis an_n_def n_sup_left_dist_mult)
lemma an_sup_right_dist_mult:
"an(x) * an(y) ⊔ an(z) = (an(x) ⊔ an(z)) * (an(y) ⊔ an(z))"
by (simp add: an_sup_left_dist_mult sup_commute)
lemma an_n_order:
"an(x) ≤ an(y) ⟷ n(y) ≤ n(x)"
by (smt (verit) an_n_def an_dist_sup le_iff_sup n_dist_sup n_mult_right_absorb_sup sup.orderE n_an_def)
lemma an_order:
"an(x) ≤ an(y) ⟷ an(x) * an(y) = an(x)"
by (metis an_n_def n_order)
lemma an_mult_left_lower_bound:
"an(x) * an(y) ≤ an(x)"
using an_case_split_right by blast
lemma an_mult_right_lower_bound:
"an(x) * an(y) ≤ an(y)"
by (simp add: an_sup_right_absorb_mult le_iff_sup)
lemma an_n_mult_left_lower_bound:
"an(x) * n(y) ≤ an(x)"
using an_case_split_right by blast
lemma an_n_mult_right_lower_bound:
"an(x) * n(y) ≤ n(y)"
using an_case_split_left by auto
lemma n_an_mult_left_lower_bound:
"n(x) * an(y) ≤ n(x)"
using an_case_split_right by auto
lemma n_an_mult_right_lower_bound:
"n(x) * an(y) ≤ an(y)"
using an_case_split_left by blast
lemma an_mult_least_upper_bound:
"an(x) ≤ an(y) ∧ an(x) ≤ an(z) ⟷ an(x) ≤ an(y) * an(z)"
by (metis an_mult_idempotent an_mult_left_lower_bound an_mult_right_lower_bound order.trans mult_isotone)
lemma an_mult_left_divisibility:
"an(x) ≤ an(y) ⟷ (∃z . an(x) = an(y) * an(z))"
by (metis an_mult_commutative an_mult_left_lower_bound an_order)
lemma an_mult_right_divisibility:
"an(x) ≤ an(y) ⟷ (∃z . an(x) = an(z) * an(y))"
by (simp add: an_mult_commutative an_mult_left_divisibility)
lemma an_split_top:
"an(x * L) * x * top ≤ x * bot"
by (metis an_split mult_assoc mult_left_isotone mult_left_zero)
lemma an_n_L:
"an(n(x) * L) = an(x)"
using an_n_def n_an_def by auto
lemma an_galois:
"an(y) ≤ an(x) ⟷ n(x) * L ≤ y"
by (simp add: an_n_order n_galois)
lemma an_mult:
"an(x * n(y) * L) = an(x * y)"
by (metis an_n_L n_mult)
lemma n_mult_top:
"an(x * n(y) * top) = an(x * y)"
by (metis an_n_L n_mult_top)
lemma an_n_equal:
"an(x) = an(y) ⟷ n(x) = n(y)"
by (metis an_n_L n_an_def)
lemma an_top_L:
"an(x * top) = an(x * L)"
by (simp add: an_n_equal n_top_L)
lemma an_case_split_left_equal:
"an(z) * x = an(z) * y ⟹ n(z) * x = n(z) * y ⟹ x = y"
using an_complement case_split_left_equal by blast
lemma an_case_split_right_equal:
"x * an(z) = y * an(z) ⟹ x * n(z) = y * n(z) ⟹ x = y"
using an_complement case_split_right_equal by blast
lemma an_equal_complement:
"n(x) ⊔ an(y) = 1 ∧ n(x) * an(y) = bot ⟷ an(x) = an(y)"
by (metis sup_commute an_complement an_dist_sup mult_left_one mult_right_dist_sup n_complement_bot)
lemma n_equal_complement:
"n(x) ⊔ an(y) = 1 ∧ n(x) * an(y) = bot ⟷ n(x) = n(y)"
by (simp add: an_equal_complement an_n_equal)
lemma an_shunting:
"an(z) * x ≤ y ⟷ x ≤ y ⊔ n(z) * top"
apply (rule iffI)
apply (meson an_case_split_left le_supI1 split_sub)
by (metis sup_bot_right an_case_split_left an_complement_bot mult_assoc mult_left_dist_sup mult_left_zero mult_right_isotone order_refl order_trans)
lemma an_shunting_an:
"an(z) * an(x) ≤ an(y) ⟷ an(x) ≤ n(z) ⊔ an(y)"
apply (rule iffI)
apply (smt sup_ge1 sup_ge2 an_case_split_left n_an_mult_left_lower_bound order_trans)
by (metis sup_bot_left sup_ge2 an_case_split_left an_complement_bot mult_left_dist_sup mult_right_isotone order_trans)
lemma an_L_zero:
"an(x * L) * x = an(x * L) * x * bot"
by (metis an_complement_bot n_split_equal sup_monoid.add_0_right vector_bot_closed mult_assoc n_export_an)
lemma n_plus_complement_intro_n:
"n(x) ⊔ an(x) * n(y) = n(x) ⊔ n(y)"
by (metis sup_commute an_complement an_n_def mult_1_right n_sup_right_dist_mult n_an_mult_commutative)
lemma n_plus_complement_intro_an:
"n(x) ⊔ an(x) * an(y) = n(x) ⊔ an(y)"
by (metis an_n_def n_plus_complement_intro_n)
lemma an_plus_complement_intro_n:
"an(x) ⊔ n(x) * n(y) = an(x) ⊔ n(y)"
by (metis an_n_def n_an_def n_plus_complement_intro_n)
lemma an_plus_complement_intro_an:
"an(x) ⊔ n(x) * an(y) = an(x) ⊔ an(y)"
by (metis an_n_def an_plus_complement_intro_n)
lemma n_mult_complement_intro_n:
"n(x) * (an(x) ⊔ n(y)) = n(x) * n(y)"
by (simp add: mult_left_dist_sup n_complement_bot)
lemma n_mult_complement_intro_an:
"n(x) * (an(x) ⊔ an(y)) = n(x) * an(y)"
by (simp add: semiring.distrib_left n_complement_bot)
lemma an_mult_complement_intro_n:
"an(x) * (n(x) ⊔ n(y)) = an(x) * n(y)"
by (simp add: an_complement_bot mult_left_dist_sup)
lemma an_mult_complement_intro_an:
"an(x) * (n(x) ⊔ an(y)) = an(x) * an(y)"
by (simp add: an_complement_bot semiring.distrib_left)
lemma an_preserves_equation:
"an(y) * x ≤ x * an(y) ⟷ an(y) * x = an(y) * x * an(y)"
by (metis an_n_def n_preserves_equation)
lemma wnf_lemma_1:
"(n(p * L) * n(q * L) ⊔ an(p * L) * an(r * L)) * n(p * L) = n(p * L) * n(q * L)"
by (smt sup_commute an_n_def n_sup_left_absorb_mult n_sup_right_dist_mult n_export n_mult_commutative n_mult_complement_intro_n)
lemma wnf_lemma_2:
"(n(p * L) * n(q * L) ⊔ an(r * L) * an(q * L)) * n(q * L) = n(p * L) * n(q * L)"
by (metis an_mult_commutative n_mult_commutative wnf_lemma_1)
lemma wnf_lemma_3:
"(n(p * L) * n(r * L) ⊔ an(p * L) * an(q * L)) * an(p * L) = an(p * L) * an(q * L)"
by (metis an_n_def sup_commute wnf_lemma_1 n_an_def)
lemma wnf_lemma_4:
"(n(r * L) * n(q * L) ⊔ an(p * L) * an(q * L)) * an(q * L) = an(p * L) * an(q * L)"
by (metis an_mult_commutative n_mult_commutative wnf_lemma_3)
lemma wnf_lemma_5:
"n(p ⊔ q) * (n(q) * x ⊔ an(q) * y) = n(q) * x ⊔ an(q) * n(p) * y"
by (smt sup_bot_right mult_assoc mult_left_dist_sup n_an_mult_commutative n_complement_bot n_dist_sup n_mult_right_absorb_sup)
definition ani :: "'a ⇒ 'a"
where "ani x ≡ an(x) * L"
lemma ani_bot:
"ani(bot) = L"
using an_bot ani_def by auto
lemma ani_one:
"ani(1) = L"
using an_one ani_def by auto
lemma ani_L:
"ani(L) = bot"
by (simp add: an_L ani_def)
lemma ani_top:
"ani(top) = bot"
by (simp add: an_top ani_def)
lemma ani_complement:
"ani(x) ⊔ ni(x) = L"
by (metis an_complement ani_def mult_right_dist_sup n_top ni_def ni_top)
lemma ani_mult_zero:
"ani(x) = ani(x * bot)"
using ani_def an_mult_zero by auto
lemma ani_antitone:
"y ≤ x ⟹ ani(x) ≤ ani(y)"
by (simp add: an_antitone ani_def mult_left_isotone)
lemma ani_mult_left_upper_bound:
"ani(x * y) ≤ ani(x)"
by (simp add: an_mult_left_upper_bound ani_def mult_left_isotone)
lemma ani_involutive:
"ani(ani(x)) = ni(x)"
by (simp add: ani_def ni_def n_an_def)
lemma ani_below_L:
"ani(x) ≤ L"
using an_case_split_left ani_def by auto
lemma ani_left_zero:
"ani(x) * y = ani(x)"
by (simp add: ani_def L_left_zero mult_assoc)
lemma ani_top_L:
"ani(x * top) = ani(x * L)"
by (simp add: an_top_L ani_def)
lemma ani_ni_order:
"ani(x) ≤ ani(y) ⟷ ni(y) ≤ ni(x)"
by (metis an_n_L ani_antitone ani_def ani_involutive ni_def)
lemma ani_ni_equal:
"ani(x) = ani(y) ⟷ ni(x) = ni(y)"
by (metis ani_ni_order order.antisym order_refl)
lemma ni_ani:
"ni(ani(x)) = ani(x)"
using an_n_def ani_def ni_def by auto
lemma ani_ni:
"ani(ni(x)) = ani(x)"
by (simp add: an_n_L ani_def ni_def)
lemma ani_mult:
"ani(x * ni(y)) = ani(x * y)"
using ani_ni_equal ni_mult by blast
lemma ani_an_order:
"ani(x) ≤ ani(y) ⟷ an(x) ≤ an(y)"
using an_galois ani_ni_order ni_def ni_galois by auto
lemma ani_an_equal:
"ani(x) = ani(y) ⟷ an(x) = an(y)"
by (metis an_n_def ani_def)
lemma n_mult_ani:
"n(x) * ani(x) = bot"
by (metis an_L ani_L ani_def mult_assoc n_complement_bot)
lemma an_mult_ni:
"an(x) * ni(x) = bot"
by (metis an_n_def ani_def n_an_def n_mult_ani ni_def)
lemma n_mult_ni:
"n(x) * ni(x) = ni(x)"
by (metis n_export n_order ni_def ni_export order_refl)
lemma an_mult_ani:
"an(x) * ani(x) = ani(x)"
by (metis an_n_def ani_def n_mult_ni ni_def)
lemma ani_ni_meet:
"x ≤ ani(y) ⟹ x ≤ ni(y) ⟹ x = bot"
by (metis an_case_split_left an_mult_ni bot_unique mult_right_isotone n_mult_ani)
lemma ani_galois:
"ani(x) ≤ y ⟷ ni(x ⊔ y) = L"
apply (rule iffI)
apply (smt (z3) an_L an_mult_commutative an_mult_right_zero ani_def an_dist_sup ni_L ni_n_equal sup.absorb1 mult_assoc n_an_def n_complement_bot)
by (metis an_L an_galois an_mult_ni an_n_def an_shunting_an ani_def an_dist_sup an_export idempotent_bot_closed n_bot transitive_bot_closed)
lemma an_ani:
"an(ani(x)) = n(x)"
by (simp add: ani_def n_an_def)
lemma n_ani:
"n(ani(x)) = an(x)"
using an_n_def ani_def by auto
lemma an_ni:
"an(ni(x)) = an(x)"
by (simp add: an_n_L ni_def)
lemma ani_an:
"ani(an(x)) = L"
by (metis an_mult_right_zero an_mult_zero an_bot ani_def mult_left_one)
lemma ani_n:
"ani(n(x)) = L"
by (simp add: ani_an n_an_def)
lemma ni_an:
"ni(an(x)) = bot"
using an_L ani_an ani_def ni_n_bot n_an_def by force
lemma ani_mult_n:
"ani(x * n(y)) = ani(x)"
by (simp add: an_mult_n ani_def)
lemma ani_mult_an:
"ani(x * an(y)) = ani(x)"
by (simp add: an_mult_an ani_def)
lemma ani_export_n:
"ani(n(x) * y) = ani(x) ⊔ ani(y)"
by (simp add: an_export_n ani_def mult_right_dist_sup)
lemma ani_export_an:
"ani(an(x) * y) = ni(x) ⊔ ani(y)"
by (simp add: ani_def an_export ni_def semiring.distrib_right)
lemma ni_export_an:
"ni(an(x) * y) = an(x) * ni(y)"
by (simp add: an_mult_right_zero ni_split)
lemma ani_mult_top:
"ani(x * n(y) * top) = ani(x * y)"
using ani_def n_mult_top by auto
lemma ani_an_bot:
"ani(x) = bot ⟷ an(x) = bot"
using an_L ani_L ani_an_equal by force
lemma ani_an_L:
"ani(x) = L ⟷ an(x) = 1"
using an_bot ani_an_equal ani_bot by force
text ‹Theorem 21›
subclass tests
apply unfold_locales
apply (simp add: mult_assoc)
apply (simp add: an_mult_commutative an_uminus)
apply (smt an_sup_left_dist_mult an_export_n an_n_L an_uminus n_an_def n_complement_bot n_export)
apply (metis an_dist_sup an_n_def an_uminus n_an_def)
using an_complement_bot an_uminus n_an_def apply fastforce
apply (simp add: an_bot an_uminus)
using an_export_n an_mult an_uminus n_an_def apply fastforce
using an_order an_uminus apply force
by (simp add: less_le_not_le)
end
class an_itering = n_itering + an_semiring + while +
assumes while_circ_def: "p ⋆ y = (p * y)⇧∘ * -p"
begin
subclass test_itering
apply unfold_locales
by (rule while_circ_def)
lemma an_circ_left_unfold:
"an(x⇧∘) = an(x * x⇧∘)"
by (metis an_dist_sup an_one circ_left_unfold mult_left_one)
lemma an_circ_x_n_circ:
"an(x⇧∘) * x * n(x⇧∘) ≤ x * bot"
by (metis an_circ_left_unfold an_mult an_split mult_assoc n_mult_right_bot)
lemma an_circ_invariant:
"an(x⇧∘) * x ≤ x * an(x⇧∘)"
proof -
have 1: "an(x⇧∘) * x * an(x⇧∘) ≤ x * an(x⇧∘)"
by (metis an_case_split_left mult_assoc order_refl)
have "an(x⇧∘) * x * n(x⇧∘) ≤ x * an(x⇧∘)"
by (metis an_circ_x_n_circ order_trans mult_right_isotone bot_least)
thus ?thesis
using 1 an_case_split_right by blast
qed
lemma ani_circ:
"ani(x)⇧∘ = 1 ⊔ ani(x)"
by (simp add: ani_def mult_L_circ)
lemma ani_circ_left_unfold:
"ani(x⇧∘) = ani(x * x⇧∘)"
by (simp add: an_circ_left_unfold ani_def)
lemma an_circ_import:
"an(y) * x ≤ x * an(y) ⟹ an(y) * x⇧∘ = an(y) * (an(y) * x)⇧∘"
by (metis an_n_def n_circ_import)
lemma preserves_L:
"preserves L (-p)"
using L_left_zero preserves_equation_test mult_assoc by force
end
class an_omega_algebra = n_omega_algebra_2 + an_semiring + while +
assumes while_Omega_def: "p ⋆ y = (p * y)⇧Ω * -p"
begin
lemma an_split_omega_omega:
"an(x⇧ω) * x⇧ω ≤ x⇧ω * bot"
by (meson an_antitone an_split mult_left_isotone omega_sub_vector order_trans)
lemma an_omega_below_an_star:
"an(x⇧ω) ≤ an(x⇧⋆)"
by (simp add: an_n_order n_star_below_n_omega)
lemma an_omega_below_an:
"an(x⇧ω) ≤ an(x)"
by (simp add: an_n_order n_below_n_omega)
lemma an_omega_induct:
"an(x * y ⊔ z) ≤ an(y) ⟹ an(x⇧ω ⊔ x⇧⋆ * z) ≤ an(y)"
by (simp add: an_n_order n_omega_induct)
lemma an_star_mult:
"an(y) ≤ an(x * y) ⟹ an(x⇧⋆ * y) = an(x⇧⋆) * an(y)"
by (metis an_dist_sup an_n_L an_n_order n_dist_sup n_star_mult)
lemma an_omega_mult:
"an(x⇧ω * y) = an(x⇧ω)"
by (simp add: an_n_equal n_omega_mult)
lemma an_star_left_unfold:
"an(x⇧⋆) = an(x * x⇧⋆)"
by (simp add: an_n_equal n_star_left_unfold)
lemma an_star_x_n_star:
"an(x⇧⋆) * x * n(x⇧⋆) ≤ x * bot"
by (metis an_n_L an_split n_mult n_mult_right_bot n_star_left_unfold mult_assoc)
lemma an_star_invariant:
"an(x⇧⋆) * x ≤ x * an(x⇧⋆)"
proof -
have 1: "an(x⇧⋆) * x * an(x⇧⋆) ≤ x * an(x⇧⋆)"
using an_case_split_left mult_assoc by auto
have "an(x⇧⋆) * x * n(x⇧⋆) ≤ x * an(x⇧⋆)"
by (metis an_star_x_n_star order_trans mult_right_isotone bot_least)
thus ?thesis
using 1 an_case_split_right by auto
qed
lemma n_an_star_unfold_invariant:
"n(an(x⇧⋆) * x⇧ω) ≤ an(x) * n(x * an(x⇧⋆) * x⇧ω)"
proof -
have "n(an(x⇧⋆) * x⇧ω) ≤ an(x)"
using an_star_left_unfold an_case_split_right an_mult_left_upper_bound n_export_an by fastforce
thus ?thesis
by (smt an_star_invariant le_iff_sup mult_assoc mult_right_dist_sup n_isotone n_order omega_unfold)
qed
lemma ani_omega_below_ani_star:
"ani(x⇧ω) ≤ ani(x⇧⋆)"
by (simp add: an_omega_below_an_star ani_an_order)
lemma ani_omega_below_ani:
"ani(x⇧ω) ≤ ani(x)"
by (simp add: an_omega_below_an ani_an_order)
lemma ani_star:
"ani(x)⇧⋆ = 1 ⊔ ani(x)"
by (simp add: ani_def mult_L_star)
lemma ani_omega:
"ani(x)⇧ω = ani(x) * L"
by (simp add: L_left_zero ani_def mult_L_omega mult_assoc)
lemma ani_omega_induct:
"ani(x * y ⊔ z) ≤ ani(y) ⟹ ani(x⇧ω ⊔ x⇧⋆ * z) ≤ ani(y)"
by (simp add: an_omega_induct ani_an_order)
lemma ani_omega_mult:
"ani(x⇧ω * y) = ani(x⇧ω)"
by (simp add: an_omega_mult ani_def)
lemma ani_star_left_unfold:
"ani(x⇧⋆) = ani(x * x⇧⋆)"
by (simp add: an_star_left_unfold ani_def)
lemma an_star_import:
"an(y) * x ≤ x * an(y) ⟹ an(y) * x⇧⋆ = an(y) * (an(y) * x)⇧⋆"
by (metis an_n_def n_star_import)
lemma an_omega_export:
"an(y) * x ≤ x * an(y) ⟹ an(y) * x⇧ω = (an(y) * x)⇧ω"
by (metis an_n_def n_omega_export)
lemma an_omega_import:
"an(y) * x ≤ x * an(y) ⟹ an(y) * x⇧ω = an(y) * (an(y) * x)⇧ω"
by (simp add: an_mult_idempotent omega_import)
end
text ‹Theorem 22›
sublocale an_omega_algebra < nL_omega: an_itering where circ = Omega
apply unfold_locales
by (rule while_Omega_def)
context an_omega_algebra
begin
lemma preserves_star:
"nL_omega.preserves x (-p) ⟹ nL_omega.preserves (x⇧⋆) (-p)"
by (simp add: nL_omega.preserves_def star.circ_simulate)
end
end