Theory Containers_TwoSat_Ex
section ‹Implementation of 2SAT using Containers›
theory Containers_TwoSat_Ex imports
TwoSat_Ex
Containers_DFS_Ex
begin
lemma abort_parametric [transfer_rule]: includes lifting_syntax shows
"((=) ===> ((=) ===> A) ===> A) Code.abort Code.abort"
unfolding Code.abort_def by transfer_prover
instantiation uprod :: (finite_UNIV) finite_UNIV begin
definition finite_UNIV_uprod :: "('a uprod, bool) phantom"
where "finite_UNIV_uprod = Phantom('a uprod) (of_phantom (finite_UNIV :: ('a, bool) phantom))"
instance by standard(auto simp add: finite_UNIV_uprod_def finite_UNIV)
end
instantiation uprod :: (card_UNIV) card_UNIV begin
definition card_UNIV_uprod :: "('a uprod, nat) phantom"
where "card_UNIV_uprod = (let n = of_phantom (card_UNIV :: ('a, nat) phantom) in Phantom('a uprod) (n * (n + 1) div 2))"
instance by standard(auto simp add: card_UNIV_uprod_def card_UNIV Let_def card_UNIV_uprod)
end
text ‹
To instantiate the @{class ceq} type class for @{typ "'a uprod"}, we must make a small detour.
As @{typ "'a uprod"}'s type definition uses HOL equality, we cannot implement a new notion of
equality that is parametrised by the equality relation. Instead, we define the subtype of all binary
relations that contains only @{term "(=)"}, and define the parametrised equality relation @{term uprod_ceq}
on the subtype. Then, the instantiation can pass the equality relation from @{term "CEQ('a :: ceq)"}
to @{term uprod_ceq} because the type class axioms ensure that the obtained relation is equivalent
to @{term "(=)"}.
›
typedef 'a equal = "{(=) :: 'a ⇒ 'a ⇒ bool}" by simp
setup_lifting type_definition_equal
lift_definition uprod_eq :: "'a equal ⇒ 'a uprod ⇒ 'a uprod ⇒ bool"
is "λeq (a, b) (c, d). eq a c ∧ eq b d ∨ eq b c ∧ eq a d"
by auto
lemma uprod_eq_simps [simp, code]:
"uprod_eq eq (Upair a b) (Upair c d) ⟷
Rep_equal eq a c ∧ Rep_equal eq b d ∨ Rep_equal eq b c ∧ Rep_equal eq a d"
supply Upair.transfer[transfer_rule] by transfer simp
lift_definition (code_dt) ceq_equal :: "'a :: ceq equal option" is "CEQ('a)"
apply(cases "CEQ('a)")
subgoal by(simp)
subgoal by(rule forw_subst[where P="pred_option _"], assumption)(simp (no_asm_use); simp add: ceq)
done
instantiation uprod :: (ceq) ceq begin
definition ceq_uprod
where "ceq_uprod = map_option uprod_eq ceq_equal"
instance
apply(standard)
apply(clarsimp simp add: ceq_uprod_def split: option.split_asm)
apply transfer
apply(auto simp add: fun_eq_iff)
done
end
text ‹
For comparison, we do a similar trick as for @{class ceq}.
›
typedef 'a compare = "{f :: 'a comparator. comparator f}"
proof -
have "partial_order_on UNIV {(x, y). x = y}"
by(simp add: partial_order_on_def preorder_on_def refl_on_def trans_def antisym_def)
then obtain ord :: "('a × 'a) set" where lin: "linear_order ord"
by(rule porder_extend_to_linorder)
define f :: "'a comparator" where
"f x y = (if (x, y) ∈ ord ∧ (y, x) ∈ ord then Eq else if (x, y) ∈ ord then Lt else Gt)" for x y
have "comparator f"
proof
show "invert_order (f x y) = f y x" for x y using lin
by(cases "x = y")(auto simp add: f_def linear_order_on_def partial_order_on_def preorder_on_def refl_on_def total_on_def)
show "x = y" if "f x y = Eq" for x y using that lin
by(auto simp add: f_def linear_order_on_def partial_order_on_def antisym_def split: if_split_asm)
show "f x z = Lt" if "f x y = Lt" "f y z = Lt" for x y z using that lin
by(auto simp add: f_def linear_order_on_def partial_order_on_def preorder_on_def split: if_split_asm dest: transD)
qed
thus ?thesis by auto
qed
setup_lifting type_definition_compare
lift_definition (code_dt) ccompare_comparator :: "'a :: ccompare compare option"
is "CCOMPARE('a)"
apply(cases "CCOMPARE('a)")
subgoal by simp
subgoal by(rule forw_subst[where P="pred_option _"], assumption)(simp (no_asm_use); simp add: ccompare)
done
lift_definition uprod_compare :: "'a compare ⇒ 'a uprod comparator"
is "λcompare (a, b) (c, d).
let (x, y) = case compare a b of Lt ⇒ (a, b) | _ ⇒ (b, a);
(x', y') = case compare c d of Lt ⇒ (c, d) | _ ⇒ (d, c)
in case compare x x' of Lt ⇒ Lt | Gt ⇒ Gt | Eq ⇒ compare y y'"
subgoal for compare ab ab' cd cd'
proof(cases ab; cases ab'; cases cd; cases cd'; hypsubst; clarsimp; elim disjE conjE; clarsimp)
fix a b c d
assume compare: "comparator compare"
then interpret comparator compare .
let ?xy = "case compare a b of Lt ⇒ (a, b) | _ ⇒ (b, a)"
let ?xy' = "case compare c d of Lt ⇒ (c, d) | _ ⇒ (d, c)"
let ?yx = "case compare b a of Lt ⇒ (b, a) | _ ⇒ (a, b)"
let ?yx' = "case compare d c of Lt ⇒ (d, c) | _ ⇒ (c, d)"
have [simp]: "?xy = ?yx" "?xy' = ?yx'"
by(auto split: order.split simp add: eq Gt_lt_conv Lt_lt_conv)
let ?side = "λxy xy'. case xy of (x, y) ⇒ case xy' of (x', y') ⇒ (case compare x x' of Eq ⇒ compare y y' | Lt ⇒ Lt | Gt ⇒ Gt)"
show "?side ?xy ?xy' = ?side ?xy ?yx'" "?side ?yx ?xy' = ?side ?xy ?xy'" "?side ?yx ?yx' = ?side ?xy ?xy'"
by simp_all
qed
done
lemma uprod_compare_simps [simp, code]:
"uprod_compare compare (Upair a b) (Upair c d) =
(let (x, y) = case Rep_compare compare a b of Lt ⇒ (a, b) | _ ⇒ (b, a);
(x', y') = case Rep_compare compare c d of Lt ⇒ (c, d) | _ ⇒ (d, c)
in case Rep_compare compare x x' of Eq ⇒ Rep_compare compare y y' | Lt ⇒ Lt | Gt ⇒ Gt)"
for compare supply Upair.transfer[transfer_rule]
by transfer simp
lemma comparator_uprod_compare: "comparator (uprod_compare compare)" for compare
proof
show "invert_order (uprod_compare compare x y) = uprod_compare compare y x" for x y
proof(transfer, goal_cases)
case (1 compare x y)
then interpret comparator compare .
show ?case by(auto split!: order.split prod.split simp add: eq Gt_lt_conv Lt_lt_conv sym dest: order.asym)
qed
show "x = y" if "uprod_compare compare x y = Eq" for x y using that
proof(transfer, goal_cases)
case (1 compare x y)
from 1(1) interpret comparator compare .
show ?case using 1(2) by(clarsimp split: order.split_asm prod.split_asm simp add: eq)
qed
show "uprod_compare compare x z = Lt"
if "uprod_compare compare x y = Lt" "uprod_compare compare y z = Lt" for x y z using that
proof(transfer, goal_cases)
case (1 compare x y z)
from 1(1) interpret comparator compare .
show ?case using 1(2-)
by(auto split!: order.splits prod.split_asm simp add: eq Gt_lt_conv Lt_lt_conv elim: trans)
qed
qed
instantiation uprod :: (ccompare) ccompare begin
definition ccompare_uprod
where "ccompare_uprod = map_option uprod_compare (ccompare_comparator :: 'a compare option)"
instance by standard(clarsimp simp add: ccompare_uprod_def comparator_uprod_compare)
end
instantiation uprod :: (set_impl) set_impl begin
definition "SET_IMPL('a uprod) = Phantom('a uprod) (of_phantom SET_IMPL('a))"
instance ..
end
function succs_of_clause :: "lit ⇒ lit uprod ⇒ lit set ⇒ lit set" where
"succs_of_clause l (Upair l1 l2) = (if l = negate l1 then insert l2 else if l = negate l2 then insert l1 else id)"
by(metis surj_pair uprod_exhaust) auto
termination by lexicographic_order
lemma succs_of_clause_split: "P (succs_of_clause l x) ⟷ (∀l1 l2. x = Upair l1 l2 ⟶ P (succs_of_clause l (Upair l1 l2)))"
by(cases x)(auto simp only:)
context begin
lemma commute_succs_of_clause: "comp_fun_commute (succs_of_clause l)"
by unfold_locales(auto split: succs_of_clause_split)
interpretation comp_fun_commute "succs_of_clause l" for l by(rule commute_succs_of_clause)
lemma idem_succs_of_clause: "comp_fun_idem (succs_of_clause l)"
by unfold_locales(auto split: succs_of_clause_split)
interpretation comp_fun_idem "succs_of_clause l" for l by(rule idem_succs_of_clause)
lift_definition succs_loop_body :: "lit ⇒ (lit uprod, lit set) comp_fun_idem" is
"succs_of_clause" by(rule idem_succs_of_clause)
definition succ_imp_graph :: "cnf ⇒ lit ⇒ lit set"
where "succ_imp_graph cnf l = set_fold_cfi (succs_loop_body l) {} cnf"
lemma succ_imp_graph_alt_def:
"succ_imp_graph cnf l = Finite_Set.fold (succs_of_clause l) {} cnf"
unfolding succ_imp_graph_def by transfer simp
lemma succ_imp_graph_correct:
"finite cnf ⟹ succ_imp_graph cnf l = {l'. (l, l') ∈ imp_graph cnf}"
by(induction rule: finite_induct)(auto split: succs_of_clause_split simp add: succ_imp_graph_alt_def)
end
lemma imp_graph_code:
"imp_graph cnf =
(if finite cnf then {(l, l'). l' ∈ succ_imp_graph cnf l}
else Code.abort (STR ''Infinite or invalid 2CNF formula'') (λ_. imp_graph cnf))"
by(auto simp add: succ_imp_graph_correct)
lift_definition imp_graph_impl :: "cnf ⇒ lit graph" is imp_graph .
lemmas [code] = imp_graph_code[containers_identify]
lemma UNIV_lit: "UNIV = range (λ(x, pos). Lit x pos)"
apply(auto)
subgoal for x by(cases x; auto)
done
instantiation lit :: finite_UNIV begin
definition "finite_UNIV_lit = Phantom(lit) False"
instance by(standard)(auto simp add: finite_UNIV_lit_def UNIV_lit inj_on_def UNIV_Times_UNIV[symmetric] finite_cartesian_product_iff simp del: UNIV_Times_UNIV dest!: finite_imageD)
end
derive (eq) ceq lit
derive (rbt) set_impl lit
derive ccompare lit
export_code imp_graph_impl checking SML
lemma finite_vars_of_cnf: "finite cnf ⟹ finite (vars_of_cnf cnf)"
by(clarsimp simp add: vars_of_cnf_def)
lemma satisfiable_code:
"satisfiable cnf ⟷
(if finite cnf ∧ is_2sat cnf then
let G = imp_graph cnf in ∀x∈vars_of_cnf cnf. ¬ (reachable G (Pos x) (Neg x) ∧ reachable G (Neg x) (Pos x))
else Code.abort (STR ''Infinite or invalid 2CNF formula'') (λ_. satisfiable cnf))"
by(simp add: reachable_def finite_2sat_iff finite_vars_of_cnf Let_def)
lemmas [code] = satisfiable_code[containers_identify]
export_code satisfiable checking SML
subsection ‹Memoize the implication graph's successor function›
lemma succ_imp_graph_outside: "succ_imp_graph cnf l = {}" if "var l ∉ vars_of_cnf cnf"
proof(cases "finite cnf")
case True
interpret comp_fun_idem "succs_of_clause l" by(rule idem_succs_of_clause)
show ?thesis using True that
by induction(auto simp add: succ_imp_graph_alt_def vars_of_cnf_def split: if_split_asm succs_of_clause_split)
next
case False
then show ?thesis by(simp add: succ_imp_graph_alt_def)
qed
lift_definition tabulate_graph :: "cnf ⇒ (lit, lit set) mapping" is
"λcnf x. if x ∉ Domain (imp_graph cnf) then None else Some (imp_graph cnf `` {x})" .
primrec insert_mapping :: "'k × 'v ⇒ ('k, 'v set) mapping ⇒ ('k, 'v set) mapping" where
"insert_mapping (k, v) m = (case Mapping.lookup m k of None ⇒ Mapping.update k {v} m | Some V ⇒ Mapping.update k (insert v V) m)"
lemma comp_fun_idem_insert_mapping: "comp_fun_idem insert_mapping"
unfolding insert_mapping_def
by(unfold_locales; transfer; auto simp add: Map_To_Mapping.map_apply_def fun_eq_iff split!: option.split)
context begin
interpretation comp_fun_idem insert_mapping by(rule comp_fun_idem_insert_mapping)
function insert_clause :: "clause ⇒ (lit, lit set) mapping ⇒ (lit, lit set) mapping" where
"insert_clause (Upair l1 l2) = insert_mapping (negate l1, l2) ∘ insert_mapping (negate l2, l1)"
by(metis uprod_exhaust)(auto simp add: comp_fun_commute)
termination by lexicographic_order
lemma comp_fun_idem_insert_clause: "comp_fun_idem insert_clause"
apply(unfold_locales)
subgoal for x y by(cases x; cases y; simp; metis commute_left_comp comp_fun_commute rewriteL_comp_comp)
subgoal for x by(cases x; simp; metis (no_types, opaque_lifting) commute_left_comp comp_assoc comp_fun_idem)
done
lift_definition insert_clause' :: "(clause, (lit, lit set) mapping) comp_fun_idem" is "insert_clause"
by(rule comp_fun_idem_insert_clause)
lemma tabulate_graph_code [code]:
"tabulate_graph cnf =
(if finite cnf then set_fold_cfi insert_clause' Mapping.empty cnf
else Code.abort (STR ''Infinite clause set'') (λ_. tabulate_graph cnf))"
proof -
interpret comp_fun_idem insert_clause by(rule comp_fun_idem_insert_clause)
have * [symmetric]: "Finite_Set.fold insert_clause Mapping.empty cnf = tabulate_graph cnf"
if "finite cnf" using that
proof(induction)
case empty
then show ?case by(simp)(transfer; auto simp add: fun_eq_iff Map_To_Mapping.map_empty_def vars_of_cnf_def)
next
case (insert C cnf)
show ?case by(cases C; simp add: insert; transfer)(auto simp add: fun_eq_iff Map_To_Mapping.map_apply_def split!: option.split)
qed
show ?thesis by(clarsimp)(transfer fixing: cnf; rule *)
qed
lemma succ_imp_graph_impl_code [code]:
"succ_imp_graph cnf =
(if finite cnf then let m = tabulate_graph cnf
in (λl. case Mapping.lookup m l of None ⇒ {} | Some succs' ⇒ succs')
else Code.abort (STR ''Infinite clause set'') (λ_. succ_imp_graph cnf))"
by transfer(auto simp add: succ_imp_graph_correct fun_eq_iff Map_To_Mapping.map_apply_def dest: succ_imp_graph_outside)
end
derive (rbt) mapping_impl lit
export_code satisfiable checking SML Scala Haskell? OCaml?
end