Theory Infra
theory Infra imports Main
begin
subsection ‹Prover configuration›
declare if_split_asm [split]
subsection ‹Forward reasoning ("attributes")›
text ‹The following lemmas are used to produce intro/elim rules from
set definitions and relation definitions.›
lemmas set_def_to_intro = eqset_imp_iff [THEN iffD2]
lemmas set_def_to_dest = eqset_imp_iff [THEN iffD1]
lemmas set_def_to_elim = set_def_to_dest [elim_format]
lemmas setc_def_to_intro =
set_def_to_intro [where B="{x. P x}", simplified] for P
lemmas setc_def_to_dest =
set_def_to_dest [where B="{x. P x}", simplified] for P
lemmas setc_def_to_elim = setc_def_to_dest [elim_format]
lemmas rel_def_to_intro = setc_def_to_intro [where x="(s, t)"] for s t
lemmas rel_def_to_dest = setc_def_to_dest [where x="(s, t)"] for s t
lemmas rel_def_to_elim = rel_def_to_dest [elim_format]
subsection ‹General results›
subsubsection ‹Maps›
text ‹We usually remove @{term"domIff"} from the simpset and clasets due
to annoying behavior. Sometimes the lemmas below are more well-behaved than
@{term "domIff"}. Usually to be used as "dest: dom\_lemmas". However, adding
them as permanent dest rules slows down proofs too much, so we refrain from
doing this.›
lemma map_definedness:
"f x = Some y ⟹ x ∈ dom f"
by (simp add: domIff)
lemma map_definedness_contra:
"⟦ f x = Some y; z ∉ dom f ⟧ ⟹ x ≠ z"
by (auto simp add: domIff)
lemmas dom_lemmas = map_definedness map_definedness_contra
subsubsection ‹Set›
declare image_comp[symmetric, simp]
lemma vimage_image_subset: "A ⊆ f-`(f`A)"
by (auto simp add: image_def vimage_def)
subsubsection ‹Relations›
lemma Image_compose [simp]:
"(R1 O R2)``A = R2``(R1``A)"
by (auto)
subsubsection ‹Lists›
lemma map_id: "map id = id"
by (simp)
lemma map_comp: "map (g o f) = map g o map f"
by (simp)
declare map_comp_map [simp del]
lemma take_prefix: "⟦ take n l = xs ⟧ ⟹ ∃xs'. l = xs @ xs'"
by (induct l arbitrary: n xs, auto)
(case_tac n, auto)
subsubsection ‹Finite sets›
text ‹Cardinality.›
declare arg_cong [where f=card, intro]
lemma finite_positive_cardI [intro!]:
"⟦ A ≠ {}; finite A ⟧ ⟹ 0 < card A"
by (auto)
lemma finite_positive_cardD [dest!]:
"⟦ 0 < card A; finite A ⟧ ⟹ A ≠ {}"
by (auto)
lemma finite_zero_cardI [intro!]:
"⟦ A = {}; finite A ⟧ ⟹ card A = 0"
by (auto)
lemma finite_zero_cardD [dest!]:
"⟦ card A = 0; finite A ⟧ ⟹ A = {}"
by (auto)
end