Theory DDLcube
section ‹Shallow Embedding of \AA qvist's system {\bf E}›
text ‹This is Aqvist's system E from the 2019 IfColog paper \cite{J45}.›
subsection ‹System {\bf E}›
theory DDLcube
imports Main
begin
nitpick_params [user_axioms,show_all,format=2]
typedecl i
type_synonym σ = "(i⇒bool)"
type_synonym α = "i⇒σ"
type_synonym τ = "σ⇒σ"
consts aw::i
abbreviation etrue :: "σ" ("❙⊤") where "❙⊤ ≡ λw. True"
abbreviation efalse :: "σ" ("❙⊥") where "❙⊥ ≡ λw. False"
abbreviation enot :: "σ⇒σ" ("❙¬_"[52]53) where "❙¬φ ≡ λw. ¬φ(w)"
abbreviation eand :: "σ⇒σ⇒σ" (infixr"❙∧"51) where "φ❙∧ψ ≡ λw. φ(w)∧ψ(w)"
abbreviation eor :: "σ⇒σ⇒σ" (infixr"❙∨"50) where "φ❙∨ψ ≡ λw. φ(w)∨ψ(w)"
abbreviation eimpf :: "σ⇒σ⇒σ" (infixr"❙→"49) where "φ❙→ψ ≡ λw. φ(w)⟶ψ(w)"
abbreviation eimpb :: "σ⇒σ⇒σ" (infixr"❙←"49) where "φ❙←ψ ≡ λw. ψ(w)⟶φ(w)"
abbreviation eequ :: "σ⇒σ⇒σ" (infixr"❙↔"48) where "φ❙↔ψ ≡ λw. φ(w)⟷ψ(w)"
abbreviation ebox :: "σ⇒σ" ("□") where "□φ ≡ λw. ∀v. φ(v)"
abbreviation ddediomond :: "σ⇒σ" ("◇") where "◇φ ≡ λw. ∃v. φ(v)"
abbreviation evalid :: "σ⇒bool" ("⌊_⌋"[8]109)
where "⌊p⌋ ≡ ∀w. p w"
abbreviation ecjactual :: "σ⇒bool" ("⌊_⌋⇩l"[7]105)
where "⌊p⌋⇩l ≡ p(aw)"
consts r :: "α" (infixr "❙r" 70)
abbreviation esubset :: "σ⇒σ⇒bool" (infix "❙⊆" 53)
where "φ ❙⊆ ψ ≡ ∀x. φ x ⟶ ψ x"
text ‹We introduce the opt and max rules. These express two candidate truth-conditions for
conditional obligation and permission.›
abbreviation eopt :: "σ⇒σ" ("opt<_>")
where "opt<φ> ≡ (λv. ( (φ)(v) ∧ (∀x. ((φ)(x) ⟶ v ❙r x) )) )"
abbreviation econdopt :: "σ⇒σ⇒σ" ("⊙<_|_>")
where "⊙<ψ|φ> ≡ λw. opt<φ> ❙⊆ ψ"
abbreviation eperm :: "σ⇒σ⇒σ" ("𝒫<_|_>")
where "𝒫<ψ|φ> ≡ ❙¬⊙<❙¬ψ|φ>"
abbreviation emax :: "σ⇒σ" ("max<_>")
where "max<φ> ≡ (λv. ( (φ)(v) ∧ (∀x. ((φ)(x) ⟶ (x ❙r v ⟶ v ❙r x)) )) )"
abbreviation econd :: "σ⇒σ⇒σ" ("○<_|_>")
where "○<ψ|φ> ≡ λw. max<φ> ❙⊆ ψ"
abbreviation euncobl :: "σ⇒σ" ("❙○<_>")
where "❙○<φ> ≡ ○<φ|❙⊤>"
abbreviation ddeperm :: "σ⇒σ⇒σ" ("P<_|_>")
where "P<ψ|φ> ≡❙¬○<❙¬ψ|φ>"
text ‹A first consistency check is performed.›
lemma True
nitpick [expect=genuine,satisfy]
oops
text ‹We show that the max-rule and opt-rule do not coincide.›
lemma "⊙<ψ|φ> ≡ ○<ψ|φ>"
nitpick [expect=genuine,card i=1]
oops
text ‹David Lewis's truth conditions for the deontic modalities are introduced.›
abbreviation lewcond :: "σ⇒σ⇒σ" ("∘<_|_>")
where "∘<ψ|φ> ≡ λv. (¬(∃x. (φ)(x))∨
(∃x. ((φ)(x)∧(ψ)(x) ∧ (∀y. ((y ❙r x) ⟶ (φ)(y)⟶(ψ)(y))))))"
abbreviation lewperm :: "σ⇒σ⇒σ" ("∫<_|_>")
where "∫<ψ|φ> ≡❙¬∘<❙¬ψ|φ>"
text ‹Kratzer's truth conditions for the deontic modalities are introduced.›
abbreviation kratcond :: "σ⇒σ⇒σ" ("⊖<_|_>")
where "⊖<ψ|φ> ≡ λv. ((∀x. ((φ)(x) ⟶
(∃y. ((φ)(y)∧(y ❙r x) ∧ ((∀z. ((z ❙r y) ⟶ (φ)(z) ⟶ (ψ)(z)))))))))"
abbreviation kratperm :: "σ⇒σ⇒σ" ("×<_|_>")
where "×<ψ|φ> ≡❙¬⊖<❙¬ψ|φ>"
subsection ‹Properties›
text ‹Extensions of {\bf E} are obtained by putting suitable constraints on the betterness relation.›
text ‹These are the standard properties of the betterness relation.›
abbreviation "reflexivity ≡ (∀x. x ❙r x)"
abbreviation "transitivity ≡ (∀x y z. (x ❙r y ∧ y ❙r z) ⟶ x ❙r z)"
abbreviation "totality ≡ (∀x y. (x ❙r y ∨ y ❙r x))"
text ‹4 versions of Lewis's limit assumption can be distinguished.›
abbreviation "mlimitedness ≡ (∀φ. (∃x. (φ)x) ⟶ (∃x. max<φ>x))"
abbreviation "msmoothness ≡
(∀φ x. ((φ)x ⟶ (max<φ>x ∨ (∃y. (y ❙r x ∧ ¬(x ❙r y) ∧ max<φ>y)))))"
abbreviation "olimitedness ≡ (∀φ. (∃x. (φ)x) ⟶ (∃x. opt<φ>x))"
abbreviation "osmoothness ≡
(∀φ x. ((φ)x ⟶ (opt<φ>x ∨ (∃y. (y ❙r x ∧ ¬(x ❙r y) ∧ opt<φ>y)))))"
text ‹Weaker forms of transitivity can be defined. They require the notion of
transitive closure.›
definition transitive :: "α⇒bool"
where "transitive Rel ≡ ∀x y z. Rel x y ∧ Rel y z ⟶ Rel x z"
definition sub_rel :: "α⇒α⇒bool"
where "sub_rel Rel1 Rel2 ≡ ∀u v. Rel1 u v ⟶ Rel2 u v"
definition assfactor::"α⇒α"
where "assfactor Rel ≡ λu v. Rel u v ∧ ¬Rel v u "
text ‹In HOL the transitive closure of a relation can be defined in a single line - Here
we apply the construction to the betterness relation and its strict variant.›
definition tcr
where "tcr ≡ λx y. ∀Q. transitive Q ⟶ (sub_rel r Q ⟶ Q x y)"
definition tcr_strict
where "tcr_strict ≡ λx y. ∀Q. transitive Q
⟶ (sub_rel (λu v. u ❙r v ∧ ¬v ❙r u) Q ⟶ Q x y)"
text ‹Quasi-transitivity requires the strict betterness relation is transitive.›
abbreviation Quasitransit
where "Quasitransit ≡ ∀x y z. (assfactor r x y ∧
assfactor r y z) ⟶ assfactor r x z"
text ‹Suzumura consistency requires that cycles with at least one non-strict betterness link are ruled out.›
abbreviation Suzumura
where "Suzumura ≡ ∀x y. tcr x y ⟶ (y ❙r x ⟶ x ❙r y)"
theorem T1: "Suzumura ≡ ∀x y. tcr x y ⟶ ¬ (y ❙r x ∧ ¬ (x ❙r y))" by simp
text ‹Acyclicity requires that cycles where all the links are strict are ruled out.›
abbreviation loopfree
where "loopfree ≡ ∀x y. tcr_strict x y ⟶ (y ❙r x ⟶ x ❙r y)"
text ‹Interval order is the combination of reflexivity and Ferrers.›
abbreviation Ferrers
where "Ferrers ≡ (∀x y z u. (x ❙r u ∧ y ❙r z) ⟶ (x ❙r z ∨ y ❙r u))"
theorem T2:
assumes Ferrers and reflexivity
shows totality
by (simp add: assms(1) assms(2))
text ‹We study the relationships between these candidate weakenings of transitivity.›
theorem T3:
assumes transitivity
shows "Suzumura"
by (metis assms sub_rel_def tcr_def transitive_def)
theorem T4:
assumes transitivity
shows Quasitransit
by (metis assfactor_def assms)
theorem T5:
assumes Suzumura
shows loopfree
by (metis (no_types, lifting) assms sub_rel_def tcr_def tcr_strict_def)
theorem T6:
assumes Quasitransit
shows loopfree
by (smt (verit, best) assfactor_def assms sub_rel_def tcr_strict_def transitive_def)
theorem T7:
assumes reflexivity and Ferrers
shows Quasitransit
by (metis assfactor_def assms)
section ‹Meta-Logical Study›
subsection ‹Correspondence - Max rule›
text ‹The inference rules of {\bf E} preserve validity in all models.›
lemma MP: "⟦⌊φ⌋; ⌊φ ❙→ ψ⌋⟧ ⟹ ⌊ψ⌋"
by simp
lemma NEC: "⌊φ⌋ ⟹ ⌊□φ⌋"
by simp
text ‹@{term "□"} is an S5 modality›
lemma C_1_refl: "⌊□φ ❙→ φ⌋"
by simp
lemma C_1_trans: "⌊□φ ❙→ (□(□φ))⌋"
by simp
lemma C_1_sym: "⌊φ ❙→ (□(◇φ))⌋"
by simp
text ‹All the axioms of {\bf E} hold - they do not correspond to a property of the betterness relation.›
lemma Abs: "⌊○<ψ|φ> ❙→ □○<ψ|φ>⌋"
by blast
lemma Nec: "⌊□ψ ❙→ ○<ψ|φ>⌋"
by blast
lemma Ext: "⌊□(φ⇩1❙↔φ⇩2) ❙→ (○<ψ|φ⇩1> ❙↔ ○<ψ|φ⇩2>)⌋"
by simp
lemma Id: "⌊○<φ|φ>⌋"
by blast
lemma Sh: "⌊○<ψ|φ⇩1❙∧φ⇩2> ❙→ ○<(φ⇩2❙→ψ)|φ⇩1>⌋"
by blast
lemma COK:"⌊○<(ψ⇩1❙→ψ⇩2)|φ> ❙→ (○<ψ⇩1|φ> ❙→ ○<ψ⇩2|φ>)⌋"
by blast
text ‹The axioms of the stronger systems do not hold in general.›
lemma "⌊◇φ ❙→ (○<ψ|φ> ❙→ P<ψ|φ>)⌋"
nitpick [expect=genuine,card i=3]
oops
lemma "⌊(○<ψ|φ> ❙∧ ○<χ|φ>) ❙→ ○<χ|φ❙∧ψ>⌋"
nitpick [expect=genuine,card i=3]
oops
lemma "⌊○<χ|(φ❙∨ψ)> ❙→ ((○<χ|φ>) ❙∨ (○<χ|ψ>))⌋"
nitpick [expect=genuine,card i=3]
oops
text ‹Now we identify a number of correspondences under the max rule. Only the direction property => axiom is verified.›
text ‹Max-limitedness corresponds to D*, the distinctive axiom of {\bf F}. The first implies the second,
but not the other around.›
theorem T8:
assumes mlimitedness
shows "D*": "⌊◇φ ❙→ ○<ψ|φ> ❙→ P<ψ|φ>⌋"
by (metis assms)
lemma
assumes "D*": "⌊◇φ ❙→ ❙¬(○<ψ|φ> ❙∧ ○<❙¬ψ|φ>)⌋"
shows mlimitedness
nitpick [expect=genuine,card i=3]
oops
text ‹Smoothness implies cautious monotony, the distinctive axiom of {\bf F}+(CM), but not the other
way around.›
theorem T9:
assumes msmoothness
shows CM: "⌊(○<ψ|φ> ❙∧ ○<χ|φ>) ❙→ ○<χ|φ❙∧ψ>⌋"
using assms by force
lemma
assumes CM: "⌊(○<ψ|φ> ❙∧ ○<χ|φ>) ❙→ ○<χ|φ❙∧ψ>⌋"
shows msmoothness
nitpick [expect=genuine,card i=3]
oops
text ‹Interval order corresponds to disjunctive rationality, the distinctive axiom of {\bf F}+(DR), but not the
other way around.›
lemma
assumes reflexivity
shows DR: "⌊○<χ|φ❙∨ψ> ❙→ (○<χ|φ> ❙∨ ○<χ|ψ>)⌋"
nitpick [expect=genuine,card i=3]
oops
theorem T10:
assumes reflexivity and Ferrers
shows DR: "⌊○<χ|(φ❙∨ψ)> ❙→ (○<χ|φ> ❙∨ ○<χ|ψ>)⌋"
by (metis assms(1) assms(2))
lemma
assumes DR: "⌊○<χ|φ❙∨ψ> ❙→ (○<χ|φ> ❙∨ ○<χ|ψ>)⌋"
shows reflexivity
nitpick [expect=genuine,card i=1]
oops
lemma
assumes DR: "⌊○<χ|φ❙∨ψ>❙→(○<χ|φ> ❙∨ ○<χ|ψ>)⌋"
shows Ferrers
nitpick [expect=genuine,card i=2]
oops
text ‹Transitivity and totality jointly correspond to the Spohn axiom (Sp), the distinctive axiom of system {\bf G}, but not vice-versa. They also jointly correspond to a
principle of transitivity for the betterness relation on formulas, but the converse fails.›
lemma
assumes transitivity
shows Sp: "⌊( P<ψ|φ> ❙∧ ○<(ψ❙→χ)|φ>) ❙→ ○<χ|(φ❙∧ψ)>⌋"
nitpick [expect=genuine,card i=3]
oops
lemma
assumes totality
shows Sp: "⌊( P<ψ|φ> ❙∧ ○<(ψ❙→χ)|φ>) ❙→ ○<χ|(φ❙∧ψ)>⌋"
nitpick [expect=genuine,card i=3]
oops
theorem T11:
assumes transitivity and totality
shows Sp: "⌊( P<ψ|φ> ❙∧ ○<(ψ❙→χ)|φ>) ❙→ ○<χ|(φ❙∧ψ)>⌋"
by (metis assms)
theorem T12:
assumes transitivity and totality
shows transit: "⌊( P<φ|φ❙∨ψ> ❙∧ P<ψ|ψ❙∨χ>) ❙→ P<φ|(φ❙∨χ)>⌋"
by (metis assms(1) assms(2))
lemma
assumes Sp: "⌊( P<ψ|φ> ❙∧ ○<(ψ❙→χ)|φ>) ❙→ ○<χ|(φ❙∧ψ)>⌋"
shows totality
nitpick [expect=genuine,card i=1]
oops
lemma
assumes Sp: "⌊( P<ψ|φ> ❙∧ ○<(ψ❙→χ)|φ>) ❙→ ○<χ|(φ❙∧ψ)>⌋"
shows transitivity
nitpick [expect=genuine,card i=2]
oops
subsection ‹Correspondence - Opt Rule›
text ‹Opt-limitedness corresponds to D, but not vice-versa.›
theorem T13:
assumes olimitedness
shows D: "⌊◇φ ❙→ ⊙<ψ|φ> ❙→ 𝒫<ψ|φ>⌋"
by (simp add: assms)
lemma
assumes D: "⌊◇φ ❙→ ⊙<ψ|φ> ❙→ 𝒫<ψ|φ>⌋"
shows olimitedness
nitpick [expect=genuine,card i=1]
oops
text ‹Smoothness implies cautious monotony, but not vice-versa.›
theorem T14:
assumes osmoothness
shows CM': "⌊( ⊙<ψ|φ> ❙∧ ⊙<χ|φ> ) ❙→ ⊙<χ|φ❙∧ψ>⌋"
using assms by force
lemma
assumes CM: "⌊( ⊙<ψ|φ> ❙∧ ⊙<χ|φ> ) ❙→ ⊙<χ|φ❙∧ψ>⌋"
shows osmoothness
nitpick [expect=genuine,card i=1]
oops
text ‹Transitivity (on worlds) implies Sp and transitivity (on formulas), but not vice-versa.›
theorem T15:
assumes transitivity
shows Sp': "⌊( 𝒫<ψ|φ> ❙∧ ⊙<(ψ❙→χ)|φ>) ❙→ ⊙<χ|(φ❙∧ψ)>⌋"
by (metis assms)
theorem T16:
assumes transitivity
shows Trans': "⌊( 𝒫<φ|φ❙∨ψ> ❙∧ 𝒫<ψ|ψ❙∨ξ> )❙→ 𝒫<φ|φ❙∨ξ>⌋"
by (metis assms)
lemma
assumes Sp: "⌊( 𝒫<ψ|φ> ❙∧ ⊙<(ψ❙→χ)|φ> ) ❙→ ⊙<χ|(φ❙∧ψ)>⌋"
assumes Trans: "⌊( 𝒫<φ|φ❙∨ψ> ❙∧ 𝒫<ψ|ψ❙∨ξ> ) ❙→ 𝒫<φ|φ❙∨ξ>⌋"
shows transitivity
nitpick [expect=genuine,card i=2]
oops
text ‹Interval order implies disjunctive rationality, but not vice-versa.›
lemma
assumes reflexivity
shows DR': "⌊⊙<χ|φ❙∨ψ> ❙→ (⊙<χ|φ> ❙∨ ⊙<χ|ψ>)⌋"
nitpick [expect=genuine,card i=3]
oops
theorem T17:
assumes reflexivity and Ferrers
shows DR': "⌊⊙<χ|φ❙∨ψ> ❙→ (⊙<χ|φ> ❙∨ ⊙<χ|ψ>)⌋"
by (metis assms(2))
lemma
assumes DR: "⌊⊙<χ|φ❙∨ψ> ❙→ (⊙<χ|φ> ❙∨ ⊙<χ|ψ>)⌋"
shows reflexivity
nitpick [expect=genuine,card i=1]
oops
lemma
assumes DR: "⌊⊙<χ|φ❙∨ψ> ❙→ (⊙<χ|φ> ❙∨ ⊙<χ|ψ>)⌋"
shows Ferrers
nitpick [expect=genuine,card i=2]
oops
subsection ‹Correspondence - Lewis' rule›
text ‹We have deontic explosion under the max rule.›
theorem DEX: "⌊(◇φ ❙∧ ○<ψ|φ> ❙∧ ○<❙¬ψ|φ>) ❙→ ○<χ|φ>⌋"
by blast
text ‹But no deontic explosion under Lewis' rule.›
lemma DEX: "⌊(◇φ ❙∧ ∘<ψ|φ> ❙∧ ∘<❙¬ψ|φ>) ❙→ ∘<χ|φ>⌋"
nitpick [expect=genuine,card i=2]
oops
text ‹The three rules are equivalent when the betterness relation meets all the standard properties.›
theorem T18:
assumes mlimitedness and transitivity and totality
shows "⌊∘<ψ|φ>❙↔⊙<ψ|φ>⌋"
by (smt (z3) assms)
theorem T19:
assumes mlimitedness and transitivity and totality
shows "⌊∘<ψ|φ>❙↔○<ψ|φ>⌋"
by (smt (z3) assms)
text ‹These are the axioms of {\bf E} that do not call for a property.›
theorem Abs': "⌊∘<ψ|φ> ❙→ □∘<ψ|φ>⌋"
by auto
theorem Nec': "⌊□ψ ❙→ ∘<ψ|φ>⌋"
by auto
theorem Ext': "⌊□(φ⇩1❙↔φ⇩2) ❙→ (∘<ψ|φ⇩1> ❙↔ ∘<ψ|φ⇩2>)⌋"
by auto
theorem Id': "⌊∘<φ|φ>⌋"
by auto
theorem Sh': "⌊∘<ψ|φ⇩1❙∧φ⇩2> ❙→ ∘<(φ⇩2❙→ψ)|φ⇩1>⌋"
by auto
text ‹One axiom of {\bf E}, and the distinctive axioms of its extensions are invalidated in the absence of
a property of the betterness relation.›
lemma D: "⌊◇φ ❙→ (∘<ψ|φ> ❙→ ∫<ψ|φ>)⌋"
nitpick [expect=genuine,card i=2]
oops
lemma Sp: "⌊( ∫<ψ|φ> ❙∧ ∘<(ψ❙→χ)|φ>) ❙→ ∘<χ|(φ❙∧ψ)>⌋"
nitpick [expect=genuine,card i=3]
oops
lemma COK:"⌊∘<(ψ⇩1❙→ψ⇩2)|φ> ❙→ (∘<ψ⇩1|φ> ❙→ ∘<ψ⇩2|φ>)⌋"
nitpick [expect=genuine,card i=2]
oops
lemma CM: "⌊(∘<ψ|φ>❙∧∘<χ|φ>)❙→ ∘<χ|φ❙∧ψ>⌋"
nitpick [expect=genuine,card i=2]
oops
text ‹Totality implies the distinctive axiom of {\bf F}, but not vice-versa.›
theorem T20:
assumes totality
shows "⌊◇φ ❙→ (∘<ψ|φ> ❙→ ∫<ψ|φ>)⌋"
using assms by blast
lemma
assumes "⌊◇φ ❙→ (∘<ψ|φ> ❙→ ∫<ψ|φ>)⌋"
shows totality
nitpick [expect=genuine,card i=3]
oops
text ‹Transitivity implies the distinctive axioms of {\bf G}, but not vice-versa.›
theorem T21:
assumes transitivity
shows Sp'': "⌊(∫<ψ|φ> ❙∧ ∘<(ψ❙→χ)|φ>) ❙→ ∘<χ|(φ❙∧ψ)>⌋"
using assms by blast
theorem T22:
assumes transitivity
shows Tr'': "⌊(∫<φ|φ❙∨ψ>❙∧∫<ψ|ψ❙∨χ>)❙→ ∫<φ|φ❙∨χ>⌋"
using assms by blast
lemma
assumes Sp'': "⌊( ∫<ψ|φ> ❙∧ ∘<(ψ❙→χ)|φ>) ❙→ ∘<χ|(φ❙∧ψ)>⌋"
shows transitivity
nitpick
oops
lemma
assumes Tr'': "⌊(∫<φ|φ❙∨ψ>❙∧∫<ψ|ψ❙∨χ>)❙→ ∫<φ|φ❙∨χ>⌋"
shows transitivity
nitpick
oops
lemma
assumes transitivity
shows COK:"⌊∘<(ψ⇩1❙→ψ⇩2)|φ> ❙→ (∘<ψ⇩1|φ> ❙→ ∘<ψ⇩2|φ>)⌋"
nitpick [expect=genuine,card i=2]
oops
lemma
assumes totality
shows COK:"⌊∘<(ψ⇩1❙→ψ⇩2)|φ> ❙→ (∘<ψ⇩1|φ> ❙→ ∘<ψ⇩2|φ>)⌋"
nitpick [expect=genuine,card i=3]
oops
text ‹Transitivity and totality imply an axiom of {\bf E} and the distinctive axiom of {\bf F}+CM,
but not vice-versa.›
theorem T23:
assumes transitivity and totality
shows COK':"⌊∘<(ψ⇩1❙→ψ⇩2)|φ> ❙→ (∘<ψ⇩1|φ> ❙→ ∘<ψ⇩2|φ>)⌋"
by (smt (verit, ccfv_SIG) assms(1) assms(2))
lemma
assumes COK':"⌊∘<(ψ⇩1❙→ψ⇩2)|φ> ❙→ (∘<ψ⇩1|φ> ❙→ ∘<ψ⇩2|φ>)⌋"
shows transitivity and totality
nitpick [expect=genuine,card i=3]
oops
theorem T24:
assumes transitivity and totality
shows CM'': "⌊(∘<ψ|φ>❙∧∘<χ|φ>)❙→ ∘<χ|φ❙∧ψ>⌋"
by (metis assms)
lemma
assumes CM'': "⌊(∘<ψ|φ>❙∧∘<χ|φ>)❙→ ∘<χ|φ❙∧ψ>⌋"
shows transitivity and totality
nitpick [expect=genuine,card i=3]
oops
text ‹Under the opt rule transitivity alone imply Sp and Trans, but not vice-versa.›
theorem T25:
assumes transitivity
shows "⌊(𝒫<ψ|φ> ❙∧ ⊙<(ψ❙→χ)|φ>) ❙→ ⊙<χ|(φ❙∧ψ)>⌋"
by (metis assms)
lemma
assumes "transitivity"
shows "⌊(𝒫<φ|φ❙∨ψ> ❙∧ 𝒫<ξ|ψ❙∨ξ>)❙→𝒫<ξ|φ❙∨ξ>⌋"
nitpick [expect=genuine,card i=2]
oops
lemma
assumes Sp: "⌊( 𝒫<ψ|φ> ❙∧ ⊙<(ψ❙→χ)|φ>) ❙→ ⊙<χ|(φ❙∧ψ)>⌋"
and Trans: "⌊(𝒫<φ|φ❙∨ψ> ❙∧ 𝒫<ξ|ψ❙∨ξ>)❙→𝒫<ξ|φ❙∨ξ>⌋"
shows transitivity
nitpick [expect=genuine,card i=2]
oops
end