Theory FractionalHeap
subsection ‹Permission Heaps›
theory FractionalHeap
imports Main PosRat PartialMap
begin
type_synonym ('l, 'v) fract_heap = "'l ⇀ prat × 'v"
definition compatible_fractions :: "('l, 'v) fract_heap ⇒ ('l, 'v) fract_heap ⇒ bool" where
"compatible_fractions h h' ⟷
(∀l p p'. h l = Some p ∧ h' l = Some p' ⟶ pgte pwrite (padd (fst p) (fst p')))"
definition same_values :: "('l, 'v) fract_heap ⇒ ('l, 'v) fract_heap ⇒ bool" where
"same_values h h' ⟷ (∀l p p'. h l = Some p ∧ h' l = Some p' ⟶ snd p = snd p')"
fun fadd_options :: "(prat × 'v) option ⇒ (prat × 'v) option ⇒ (prat × 'v) option"
where
"fadd_options None x = x"
| "fadd_options x None = x"
| "fadd_options (Some x) (Some y) = Some (padd (fst x) (fst y), snd x)"
lemma fadd_options_cancellative:
assumes "fadd_options a x = fadd_options b x"
shows "a = b"
proof (cases x)
case None
then show ?thesis
by (metis assms fadd_options.elims option.simps(3))
next
case (Some xx)
then have "x = Some xx" by simp
then show ?thesis
apply (cases a)
apply (cases b)
apply simp
apply (metis assms fadd_options.simps(1) fadd_options.simps(3) fst_conv not_pgte_charact option.sel padd_comm pgt_implies_pgte sum_larger)
apply (cases b)
apply (metis assms fadd_options.simps(1) fadd_options.simps(3) fst_conv not_pgte_charact option.sel padd_comm pgt_implies_pgte sum_larger)
proof -
fix aa bb assume "a = Some aa" "b = Some bb"
then have "snd aa = snd bb"
using Some assms by auto
moreover have "fst aa = fst bb"
using padd_cancellative[of "padd (fst aa) (fst xx)" "fst bb" "fst xx" "fst aa"]
Some ‹a = Some aa› ‹b = Some bb› assms fadd_options.simps(3) fst_conv option.inject
by auto
ultimately show "a = b"
by (simp add: ‹a = Some aa› ‹b = Some bb› prod_eq_iff)
qed
qed
definition compatible_fract_heaps :: "('l, 'v) fract_heap ⇒ ('l, 'v) fract_heap ⇒ bool" where
"compatible_fract_heaps h h' ⟷ compatible_fractions h h' ∧ same_values h h'"
lemma compatible_fract_heapsI:
assumes "⋀l p p'. h l = Some p ∧ h' l = Some p' ⟹ pgte pwrite (padd (fst p) (fst p'))"
and "⋀l p p'. h l = Some p ∧ h' l = Some p' ⟹ snd p = snd p'"
shows "compatible_fract_heaps h h'"
by (simp add: assms(1) assms(2) compatible_fract_heaps_def compatible_fractions_def same_values_def)
lemma compatible_fract_heapsE:
assumes "compatible_fract_heaps h h'"
and "h l = Some p ∧ h' l = Some p'"
shows "pgte pwrite (padd (fst p) (fst p'))"
and "snd p = snd p'"
apply (meson assms(1) assms(2) compatible_fract_heaps_def compatible_fractions_def)
by (meson assms(1) assms(2) compatible_fract_heaps_def same_values_def)
lemma compatible_fract_heaps_comm:
assumes "compatible_fract_heaps h h'"
shows "compatible_fract_heaps h' h"
proof (rule compatible_fract_heapsI)
show "⋀l p p'. h' l = Some p ∧ h l = Some p' ⟹ pgte pwrite (padd (fst p) (fst p'))"
by (metis assms compatible_fract_heapsE(1) padd_comm)
show "⋀l p p'. h' l = Some p ∧ h l = Some p' ⟹ snd p = snd p'"
using assms compatible_fract_heapsE(2) by fastforce
qed
text ‹The following definition only makes sense if h and h' are compatible›
definition add_fh :: "('l, 'v) fract_heap ⇒ ('l, 'v) fract_heap ⇒ ('l, 'v) fract_heap" where
"add_fh h h' l = fadd_options (h l) (h' l)"
definition full_ownership :: "('l, 'v) fract_heap ⇒ bool" where
"full_ownership h ⟷ (∀l p. h l = Some p ⟶ fst p = pwrite)"
lemma full_ownershipI:
assumes "⋀l p. h l = Some p ⟹ fst p = pwrite"
shows "full_ownership h"
by (simp add: assms full_ownership_def)
fun apply_opt where
"apply_opt f None = None"
| "apply_opt f (Some x) = Some (f x)"
definition normalize :: "('l, 'v) fract_heap ⇒ ('l ⇀ 'v)" where
"normalize h l = apply_opt snd (h l)"
lemma normalize_eq:
"normalize h l = None ⟷ h l = None"
"normalize h l = Some v ⟷ (∃p. h l = Some (p, v))" (is "?A ⟷ ?B")
apply (metis FractionalHeap.normalize_def apply_opt.elims option.distinct(1))
proof
show "?B ⟹ ?A"
by (metis FractionalHeap.normalize_def apply_opt.simps(2) snd_eqD)
assume ?A then have "h l ≠ None"
by (metis FractionalHeap.normalize_def apply_opt.simps(1) option.distinct(1))
then obtain p where "h l = Some p"
by blast
then show ?B
by (metis FractionalHeap.normalize_def ‹FractionalHeap.normalize h l = Some v› ‹h l ≠ None› apply_opt.elims option.inject prod.exhaust_sel)
qed
definition fpdom where
"fpdom h = {x. ∃v. h x = Some (pwrite, v)}"
lemma compatible_then_dom_disjoint:
assumes "compatible_fract_heaps h1 h2"
shows "dom h1 ∩ fpdom h2 = {}"
and "dom h2 ∩ fpdom h1 = {}"
proof -
have r: "⋀h1 h2. compatible_fract_heaps h1 h2 ⟹ dom h1 ∩ fpdom h2 = {}"
proof -
fix h1 h2 assume asm0: "compatible_fract_heaps h1 h2"
show "dom h1 ∩ fpdom h2 = {}"
proof
show "dom h1 ∩ fpdom h2 ⊆ {}"
proof
fix x assume "x ∈ dom h1 ∩ fpdom h2"
then have "x ∈ dom h1 ∧ x ∈ fpdom h2" by auto
then have "h1 x ≠ None ∧ h2 x ≠ None"
using domIff fpdom_def[of h2] mem_Collect_eq option.discI
by auto
then obtain a b where "h1 x = Some a" "h2 x = Some b" by auto
then have "fst b = pwrite ∧ pgte pwrite (padd (fst a) (fst b))"
using ‹x ∈ dom h1 ∧ x ∈ fpdom h2› asm0 compatible_fract_heapsE(1) fpdom_def[of h2] fst_conv mem_Collect_eq option.sel
by fastforce
then show "x ∈ {}"
by (metis not_pgte_charact padd_comm sum_larger)
qed
qed (simp)
qed
then show "dom h1 ∩ fpdom h2 = {}"
using assms by blast
show "dom h2 ∩ fpdom h1 = {}"
by (simp add: assms compatible_fract_heaps_comm r)
qed
lemma compatible_dom_sum:
assumes "compatible_fract_heaps h1 h2"
shows "dom (add_fh h1 h2) = dom h1 ∪ dom h2" (is "?A = ?B")
proof
show "?B ⊆ ?A"
proof
fix x assume "x ∈ ?B"
show "x ∈ ?A"
proof (cases "x ∈ dom h1")
case True
then show ?thesis using add_fh_def[of h1 h2] domI domIff fadd_options.elims
by metis
next
case False
then have "x ∈ dom h2"
using ‹x ∈ dom h1 ∪ dom h2› by auto
then show ?thesis using add_fh_def[of h1 h2] domI domIff fadd_options.elims
by metis
qed
qed
show "?A ⊆ ?B"
using UnI1[of _ "dom h1" "dom h2"] UnI2[of _ "dom h1" "dom h2"] add_fh_def[of h1 h2] domIff fadd_options.simps(1) subset_iff[of ?A ?B]
dom_map_add map_add_None
by metis
qed
lemma add_fh_asso:
"add_fh (add_fh a b) c = add_fh a (add_fh b c)"
proof (rule ext)
fix x
show "add_fh (add_fh a b) c x = add_fh a (add_fh b c) x"
proof (cases "a x")
case None
then show ?thesis
by (simp add: add_fh_def)
next
case (Some aa)
then have "a x = Some aa" by simp
then show ?thesis
proof (cases "b x")
case None
then show ?thesis
by (simp add: Some add_fh_def)
next
case (Some bb)
then have "b x = Some bb" by simp
then show ?thesis
proof (cases "c x")
case None
then show ?thesis
by (simp add: Some ‹a x = Some aa› add_fh_def)
next
case (Some cc)
then have "add_fh (add_fh a b) c x = Some (padd (padd (fst aa) (fst bb)) (fst cc), snd aa)"
by (simp add: ‹a x = Some aa› ‹b x = Some bb› add_fh_def)
moreover have "add_fh a (add_fh b c) x = Some (padd (fst aa) (padd (fst bb) (fst cc)), snd aa)"
by (simp add: Some ‹a x = Some aa› ‹b x = Some bb› add_fh_def)
ultimately show ?thesis
by (simp add: padd_asso)
qed
qed
qed
qed
lemma add_fh_update:
assumes "b x = None"
shows "add_fh (a(x ↦ p)) b = (add_fh a b)(x ↦ p)"
proof (rule ext)
fix l show "add_fh (a(x ↦ p)) b l = ((add_fh a b)(x ↦ p)) l"
apply (cases "l = x")
apply (simp add: add_fh_def assms)
by (simp add: add_fh_def)
qed
end