Theory Trie_Impl
section ‹\isaheader{Implementation of a trie with explicit invariants}›
theory Trie_Impl imports
"../../Lib/Assoc_List"
Trie.Trie
begin
subsection ‹Interuptible iterator›
fun iteratei_postfixed :: "'key list ⇒ ('key, 'val) trie ⇒
('key list × 'val, 'σ) set_iterator"
where
"iteratei_postfixed ks (Trie vo ts) c f σ =
(if c σ
then foldli ts c (λ(k, t) σ. iteratei_postfixed (k # ks) t c f σ)
(case vo of None ⇒ σ | Some v ⇒ f (ks, v) σ)
else σ)"
definition iteratei :: "('key, 'val) trie ⇒ ('key list × 'val, 'σ) set_iterator"
where "iteratei t c f σ = iteratei_postfixed [] t c f σ"
lemma iteratei_postfixed_interrupt:
"¬ c σ ⟹ iteratei_postfixed ks t c f σ = σ"
by(cases t) simp
lemma iteratei_interrupt:
"¬ c σ ⟹ iteratei t c f σ = σ"
unfolding iteratei_def by (simp add: iteratei_postfixed_interrupt)
lemma iteratei_postfixed_alt_def :
"iteratei_postfixed ks ((Trie vo ts)::('key, 'val) trie) =
(set_iterator_union
(case_option set_iterator_emp (λv. set_iterator_sng (ks, v)) vo)
(set_iterator_image snd
(set_iterator_product (foldli ts)
(λ(k, t'). iteratei_postfixed (k # ks) t'))
))"
proof -
have aux: "⋀c f. (λ(k, t). iteratei_postfixed (k # ks) t c f) =
(λa. iteratei_postfixed (fst a # ks) (snd a) c f)"
by auto
show ?thesis
apply (rule ext)+ apply (rename_tac c f σ)
apply (simp add: set_iterator_product_def set_iterator_image_filter_def
set_iterator_union_def set_iterator_sng_def set_iterator_image_alt_def
case_prod_beta set_iterator_emp_def
split: option.splits)
apply (simp add: aux)
done
qed
lemma iteratei_postfixed_correct :
assumes invar: "invar_trie (t :: ('key, 'val) trie)"
shows "set_iterator ((iteratei_postfixed ks0 t)::('key list × 'val, 'σ) set_iterator)
((λksv. (rev (fst ksv) @ ks0, (snd ksv))) ` (map_to_set (lookup_trie t)))"
using invar
proof (induct t arbitrary: ks0)
case (Trie vo kvs)
note ind_hyp = Trie(1)
note invar = Trie(2)
from invar
have dist_fst_kvs : "distinct (map fst kvs)"
and dist_kvs: "distinct kvs"
and invar_child: "⋀k t. (k, t) ∈ set kvs ⟹ invar_trie t"
by (simp_all add: Ball_def distinct_map)
define it_vo :: "('key list × 'val, 'σ) set_iterator"
where "it_vo =
(case vo of None ⇒ set_iterator_emp
| Some v ⇒ set_iterator_sng (ks0, v))"
define vo_S where "vo_S = (case vo of None ⇒ {} | Some v ⇒ {(ks0, v)})"
have it_vo_OK: "set_iterator it_vo vo_S"
unfolding it_vo_def vo_S_def
by (simp split: option.split
add: set_iterator_emp_correct set_iterator_sng_correct)
define it_prod :: "(('key × ('key, 'val) trie) × 'key list × 'val, 'σ) set_iterator"
where "it_prod = set_iterator_product (foldli kvs) (λ(k, y). iteratei_postfixed (k # ks0) y)"
define it_prod_S where "it_prod_S = (SIGMA kt:set kvs.
(λksv. (rev (fst ksv) @ ((fst kt) # ks0), snd ksv)) `
map_to_set (lookup_trie (snd kt)))"
have it_prod_OK: "set_iterator it_prod it_prod_S"
proof -
from set_iterator_foldli_correct[OF dist_kvs]
have it_foldli: "set_iterator (foldli kvs) (set kvs)" .
{ fix kt
assume kt_in: "kt ∈ set kvs"
hence k_t_in: "(fst kt, snd kt) ∈ set kvs" by simp
note ind_hyp [OF k_t_in, OF invar_child[OF k_t_in], of "fst kt # ks0"]
} note it_child = this
show ?thesis
unfolding it_prod_def it_prod_S_def
apply (rule set_iterator_product_correct [OF it_foldli])
apply (insert it_child)
apply (simp add: case_prod_beta)
done
qed
have it_image_OK : "set_iterator (set_iterator_image snd it_prod) (snd ` it_prod_S)"
proof (rule set_iterator_image_correct[OF it_prod_OK])
from dist_fst_kvs
have "⋀k v1 v2. (k, v1) ∈ set kvs ⟹ (k, v2) ∈ set kvs ⟹ v1 = v2"
by (induct kvs) (auto simp add: image_iff)
thus "inj_on snd it_prod_S"
unfolding inj_on_def it_prod_S_def
apply (simp add: image_iff Ball_def map_to_set_def)
apply auto
done
qed auto
have it_all_OK: "set_iterator
((iteratei_postfixed ks0 (Trie vo kvs)):: ('key list × 'val, 'σ) set_iterator)
(vo_S ∪ snd ` it_prod_S)"
unfolding iteratei_postfixed_alt_def
it_vo_def[symmetric]
it_prod_def[symmetric]
proof (rule set_iterator_union_correct [OF it_vo_OK it_image_OK])
show "vo_S ∩ snd ` it_prod_S = {}"
unfolding vo_S_def it_prod_S_def
by (simp split: option.split add: set_eq_iff image_iff)
qed
have it_set_rewr: "((λksv. (rev (fst ksv) @ ks0, snd ksv)) `
map_to_set (lookup_trie (Trie vo kvs))) = (vo_S ∪ snd ` it_prod_S)"
(is "?ls = ?rs")
apply (simp add: map_to_set_def lookup_eq_Some_iff[OF invar]
set_eq_iff image_iff vo_S_def it_prod_S_def Ball_def Bex_def)
apply (simp split: option.split del: ex_simps add: ex_simps[symmetric])
apply (intro allI impI iffI)
apply auto[]
apply (metis append_Cons append_Nil append_assoc rev.simps)
done
show ?case
unfolding it_set_rewr using it_all_OK by fast
qed
definition trie_reverse_key where
"trie_reverse_key ksv = (rev (fst ksv), (snd ksv))"
lemma trie_reverse_key_alt_def[code] :
"trie_reverse_key (ks, v) = (rev ks, v)"
unfolding trie_reverse_key_def by auto
lemma trie_reverse_key_reverse[simp] :
"trie_reverse_key (trie_reverse_key ksv) = ksv"
by (simp add: trie_reverse_key_def)
lemma trie_iteratei_correct:
assumes invar: "invar_trie (t :: ('key, 'val) trie)"
shows "set_iterator ((iteratei t)::('key list × 'val, 'σ) set_iterator)
(trie_reverse_key ` (map_to_set (lookup_trie t)))"
unfolding trie_reverse_key_def[abs_def] iteratei_def[abs_def]
using iteratei_postfixed_correct [OF invar, of "[]"]
by simp
hide_const (open) iteratei
hide_type (open) trie
end