Theory Native_Word.Uint
chapter ‹Unsigned words of default size›
theory Uint imports
Word_Type_Copies
Code_Target_Integer_Bit
begin
text ‹
This theory provides access to words in the target languages of the code generator
whose bit width is the default of the target language. To that end, the type ‹uint›
models words of width ‹dflt_size›, but ‹dflt_size› is known only to be positive.
Usage restrictions:
Default-size words (type ‹uint›) cannot be used for evaluation, because
the results depend on the particular choice of word size in the target language
and implementation. Symbolic evaluation has not yet been set up for ‹uint›.
›
text ‹The default size type›
typedecl dflt_size
instantiation dflt_size :: typerep begin
definition "typerep_class.typerep ≡ λ_ :: dflt_size itself. Typerep.Typerep (STR ''Uint.dflt_size'') []"
instance ..
end
consts dflt_size_aux :: "nat"
specification (dflt_size_aux) dflt_size_aux_g0: "dflt_size_aux > 0"
by auto
hide_fact dflt_size_aux_def
instantiation dflt_size :: len begin
definition "len_of_dflt_size (_ :: dflt_size itself) ≡ dflt_size_aux"
instance by(intro_classes)(simp add: len_of_dflt_size_def dflt_size_aux_g0)
end
abbreviation "dflt_size ≡ len_of (TYPE (dflt_size))"
context includes integer.lifting begin
lift_definition dflt_size_integer :: integer is "int dflt_size" .
declare dflt_size_integer_def[code del]
lemma dflt_size_by_int[code]: "dflt_size = nat_of_integer dflt_size_integer"
by transfer simp
lemma dflt_size[simp]:
"dflt_size > 0"
"dflt_size ≥ Suc 0"
"¬ dflt_size < Suc 0"
using len_gt_0[where 'a=dflt_size]
by (simp_all del: len_gt_0)
end
section ‹Type definition and primitive operations›
typedef uint = ‹UNIV :: dflt_size word set› ..
global_interpretation uint: word_type_copy Abs_uint Rep_uint
using type_definition_uint by (rule word_type_copy.intro)
setup_lifting type_definition_uint
declare uint.of_word_of [code abstype]
declare Quotient_uint [transfer_rule]
instantiation uint :: ‹{comm_ring_1, semiring_modulo, equal, linorder}›
begin
lift_definition zero_uint :: uint is 0 .
lift_definition one_uint :: uint is 1 .
lift_definition plus_uint :: ‹uint ⇒ uint ⇒ uint› is ‹(+)› .
lift_definition uminus_uint :: ‹uint ⇒ uint› is uminus .
lift_definition minus_uint :: ‹uint ⇒ uint ⇒ uint› is ‹(-)› .
lift_definition times_uint :: ‹uint ⇒ uint ⇒ uint› is ‹(*)› .
lift_definition divide_uint :: ‹uint ⇒ uint ⇒ uint› is ‹(div)› .
lift_definition modulo_uint :: ‹uint ⇒ uint ⇒ uint› is ‹(mod)› .
lift_definition equal_uint :: ‹uint ⇒ uint ⇒ bool› is ‹HOL.equal› .
lift_definition less_eq_uint :: ‹uint ⇒ uint ⇒ bool› is ‹(≤)› .
lift_definition less_uint :: ‹uint ⇒ uint ⇒ bool› is ‹(<)› .
global_interpretation uint: word_type_copy_ring Abs_uint Rep_uint
by standard (fact zero_uint.rep_eq one_uint.rep_eq
plus_uint.rep_eq uminus_uint.rep_eq minus_uint.rep_eq
times_uint.rep_eq divide_uint.rep_eq modulo_uint.rep_eq
equal_uint.rep_eq less_eq_uint.rep_eq less_uint.rep_eq)+
instance proof -
show ‹OFCLASS(uint, comm_ring_1_class)›
by (rule uint.of_class_comm_ring_1)
show ‹OFCLASS(uint, semiring_modulo_class)›
by (fact uint.of_class_semiring_modulo)
show ‹OFCLASS(uint, equal_class)›
by (fact uint.of_class_equal)
show ‹OFCLASS(uint, linorder_class)›
by (fact uint.of_class_linorder)
qed
end
instantiation uint :: ring_bit_operations
begin
lift_definition bit_uint :: ‹uint ⇒ nat ⇒ bool› is bit .
lift_definition not_uint :: ‹uint ⇒ uint› is ‹Bit_Operations.not› .
lift_definition and_uint :: ‹uint ⇒ uint ⇒ uint› is ‹Bit_Operations.and› .
lift_definition or_uint :: ‹uint ⇒ uint ⇒ uint› is ‹Bit_Operations.or› .
lift_definition xor_uint :: ‹uint ⇒ uint ⇒ uint› is ‹Bit_Operations.xor› .
lift_definition mask_uint :: ‹nat ⇒ uint› is mask .
lift_definition push_bit_uint :: ‹nat ⇒ uint ⇒ uint› is push_bit .
lift_definition drop_bit_uint :: ‹nat ⇒ uint ⇒ uint› is drop_bit .
lift_definition signed_drop_bit_uint :: ‹nat ⇒ uint ⇒ uint› is signed_drop_bit .
lift_definition take_bit_uint :: ‹nat ⇒ uint ⇒ uint› is take_bit .
lift_definition set_bit_uint :: ‹nat ⇒ uint ⇒ uint› is Bit_Operations.set_bit .
lift_definition unset_bit_uint :: ‹nat ⇒ uint ⇒ uint› is unset_bit .
lift_definition flip_bit_uint :: ‹nat ⇒ uint ⇒ uint› is flip_bit .
global_interpretation uint: word_type_copy_bits Abs_uint Rep_uint signed_drop_bit_uint
by standard (fact bit_uint.rep_eq not_uint.rep_eq and_uint.rep_eq or_uint.rep_eq xor_uint.rep_eq
mask_uint.rep_eq push_bit_uint.rep_eq drop_bit_uint.rep_eq signed_drop_bit_uint.rep_eq take_bit_uint.rep_eq
set_bit_uint.rep_eq unset_bit_uint.rep_eq flip_bit_uint.rep_eq)+
instance
by (fact uint.of_class_ring_bit_operations)
end
lift_definition uint_of_nat :: ‹nat ⇒ uint›
is word_of_nat .
lift_definition nat_of_uint :: ‹uint ⇒ nat›
is unat .
lift_definition uint_of_int :: ‹int ⇒ uint›
is word_of_int .
lift_definition int_of_uint :: ‹uint ⇒ int›
is uint .
context
includes integer.lifting
begin
lift_definition Uint :: ‹integer ⇒ uint›
is word_of_int .
lift_definition integer_of_uint :: ‹uint ⇒ integer›
is uint .
end
global_interpretation uint: word_type_copy_more Abs_uint Rep_uint signed_drop_bit_uint
uint_of_nat nat_of_uint uint_of_int int_of_uint Uint integer_of_uint
apply standard
apply (simp_all add: uint_of_nat.rep_eq nat_of_uint.rep_eq
uint_of_int.rep_eq int_of_uint.rep_eq
Uint.rep_eq integer_of_uint.rep_eq integer_eq_iff)
done
instantiation uint :: "{size, msb, lsb, set_bit, bit_comprehension}"
begin
lift_definition size_uint :: ‹uint ⇒ nat› is size .
lift_definition msb_uint :: ‹uint ⇒ bool› is msb .
lift_definition lsb_uint :: ‹uint ⇒ bool› is lsb .
text ‹Workaround: avoid name space clash by spelling out \<^text>‹lift_definition› explicitly.›
definition set_bit_uint :: ‹uint ⇒ nat ⇒ bool ⇒ uint›
where set_bit_uint_eq: ‹set_bit_uint a n b = (if b then Bit_Operations.set_bit else unset_bit) n a›
context
includes lifting_syntax
begin
lemma set_bit_uint_transfer [transfer_rule]:
‹(cr_uint ===> (=) ===> (⟷) ===> cr_uint) Generic_set_bit.set_bit Generic_set_bit.set_bit›
by (simp only: set_bit_eq [abs_def] set_bit_uint_eq [abs_def]) transfer_prover
end
lift_definition set_bits_uint :: ‹(nat ⇒ bool) ⇒ uint› is set_bits .
lift_definition set_bits_aux_uint :: ‹(nat ⇒ bool) ⇒ nat ⇒ uint ⇒ uint› is set_bits_aux .
global_interpretation uint: word_type_copy_misc Abs_uint Rep_uint signed_drop_bit_uint
uint_of_nat nat_of_uint uint_of_int int_of_uint Uint integer_of_uint dflt_size set_bits_aux_uint
by (standard; transfer) simp_all
instance using uint.of_class_bit_comprehension
uint.of_class_set_bit uint.of_class_lsb
by simp_all standard
end
section ‹Code setup›
code_printing code_module Uint ⇀ (SML)
‹
structure Uint : sig
val set_bit : Word.word -> IntInf.int -> bool -> Word.word
val shiftl : Word.word -> IntInf.int -> Word.word
val shiftr : Word.word -> IntInf.int -> Word.word
val shiftr_signed : Word.word -> IntInf.int -> Word.word
val test_bit : Word.word -> IntInf.int -> bool
end = struct
fun set_bit x n b =
let val mask = Word.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))
in if b then Word.orb (x, mask)
else Word.andb (x, Word.notb mask)
end
fun shiftl x n =
Word.<< (x, Word.fromLargeInt (IntInf.toLarge n))
fun shiftr x n =
Word.>> (x, Word.fromLargeInt (IntInf.toLarge n))
fun shiftr_signed x n =
Word.~>> (x, Word.fromLargeInt (IntInf.toLarge n))
fun test_bit x n =
Word.andb (x, Word.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word.fromInt 0
end; (* struct Uint *)›
code_reserved SML Uint
code_printing code_module Uint ⇀ (Haskell)
‹module Uint(Int, Word, dflt_size) where
import qualified Prelude
import Data.Int(Int)
import Data.Word(Word)
import qualified Data.Bits
dflt_size :: Prelude.Integer
dflt_size = Prelude.toInteger (bitSize_aux (0::Word)) where
bitSize_aux :: (Data.Bits.Bits a, Prelude.Bounded a) => a -> Int
bitSize_aux = Data.Bits.bitSize›
and (Haskell_Quickcheck)
‹module Uint(Int, Word, dflt_size) where
import qualified Prelude
import Data.Int(Int)
import Data.Word(Word)
import qualified Data.Bits
dflt_size :: Prelude.Int
dflt_size = bitSize_aux (0::Word) where
bitSize_aux :: (Data.Bits.Bits a, Prelude.Bounded a) => a -> Int
bitSize_aux = Data.Bits.bitSize
›
code_reserved Haskell Uint dflt_size
text ‹
OCaml and Scala provide only signed bit numbers, so we use these and
implement sign-sensitive operations like comparisons manually.
›
code_printing code_module "Uint" ⇀ (OCaml)
‹module Uint : sig
type t = int
val dflt_size : Z.t
val less : t -> t -> bool
val less_eq : t -> t -> bool
val set_bit : t -> Z.t -> bool -> t
val shiftl : t -> Z.t -> t
val shiftr : t -> Z.t -> t
val shiftr_signed : t -> Z.t -> t
val test_bit : t -> Z.t -> bool
val int_mask : int
val int32_mask : int32
val int64_mask : int64
end = struct
type t = int
let dflt_size = Z.of_int Sys.int_size;;
(* negative numbers have their highest bit set,
so they are greater than positive ones *)
let less x y =
if x<0 then
y<0 && x<y
else y < 0 || x < y;;
let less_eq x y =
if x < 0 then
y < 0 && x <= y
else y < 0 || x <= y;;
let set_bit x n b =
let mask = 1 lsl (Z.to_int n)
in if b then x lor mask
else x land (lnot mask);;
let shiftl x n = x lsl (Z.to_int n);;
let shiftr x n = x lsr (Z.to_int n);;
let shiftr_signed x n = x asr (Z.to_int n);;
let test_bit x n = x land (1 lsl (Z.to_int n)) <> 0;;
let int_mask =
if Sys.int_size < 32 then lnot 0 else 0xFFFFFFFF;;
let int32_mask =
if Sys.int_size < 32 then Int32.pred (Int32.shift_left Int32.one Sys.int_size)
else Int32.of_string "0xFFFFFFFF";;
let int64_mask =
if Sys.int_size < 64 then Int64.pred (Int64.shift_left Int64.one Sys.int_size)
else Int64.of_string "0xFFFFFFFFFFFFFFFF";;
end;; (*struct Uint*)›
code_reserved OCaml Uint
code_printing code_module Uint ⇀ (Scala)
‹object Uint {
def dflt_size : BigInt = BigInt(32)
def less(x: Int, y: Int) : Boolean =
x < 0 match {
case true => y < 0 && x < y
case false => y < 0 || x < y
}
def less_eq(x: Int, y: Int) : Boolean =
x < 0 match {
case true => y < 0 && x <= y
case false => y < 0 || x <= y
}
def set_bit(x: Int, n: BigInt, b: Boolean) : Int =
b match {
case true => x | (1 << n.intValue)
case false => x & (1 << n.intValue).unary_~
}
def shiftl(x: Int, n: BigInt) : Int = x << n.intValue
def shiftr(x: Int, n: BigInt) : Int = x >>> n.intValue
def shiftr_signed(x: Int, n: BigInt) : Int = x >> n.intValue
def test_bit(x: Int, n: BigInt) : Boolean =
(x & (1 << n.intValue)) != 0
} /* object Uint */›
code_reserved Scala Uint
text ‹
OCaml's conversion from Big\_int to int demands that the value fits into a signed integer.
The following justifies the implementation.
›
context
includes integer.lifting bit_operations_syntax
begin
definition wivs_mask :: int where "wivs_mask = 2^ dflt_size - 1"
lift_definition wivs_mask_integer :: integer is wivs_mask .
lemma [code]: "wivs_mask_integer = 2 ^ dflt_size - 1"
by transfer (simp add: wivs_mask_def)
definition wivs_shift :: int where "wivs_shift = 2 ^ dflt_size"
lift_definition wivs_shift_integer :: integer is wivs_shift .
lemma [code]: "wivs_shift_integer = 2 ^ dflt_size"
by transfer (simp add: wivs_shift_def)
definition wivs_index :: nat where "wivs_index == dflt_size - 1"
lift_definition wivs_index_integer :: integer is "int wivs_index".
lemma wivs_index_integer_code[code]: "wivs_index_integer = dflt_size_integer - 1"
by transfer (simp add: wivs_index_def of_nat_diff)
definition wivs_overflow :: int where "wivs_overflow == 2^ (dflt_size - 1)"
lift_definition wivs_overflow_integer :: integer is wivs_overflow .
lemma [code]: "wivs_overflow_integer = 2 ^ (dflt_size - 1)"
by transfer (simp add: wivs_overflow_def)
definition wivs_least :: int where "wivs_least == - wivs_overflow"
lift_definition wivs_least_integer :: integer is wivs_least .
lemma [code]: "wivs_least_integer = - (2 ^ (dflt_size - 1))"
by transfer (simp add: wivs_overflow_def wivs_least_def)
definition Uint_signed :: "integer ⇒ uint" where
"Uint_signed i = (if i < wivs_least_integer ∨ wivs_overflow_integer ≤ i then undefined Uint i else Uint i)"
lemma Uint_code [code]:
"Uint i =
(let i' = i AND wivs_mask_integer in
if bit i' wivs_index then Uint_signed (i' - wivs_shift_integer) else Uint_signed i')"
including undefined_transfer
unfolding Uint_signed_def
apply transfer
apply (subst word_of_int_via_signed)
apply (auto simp add: push_bit_of_1 mask_eq_exp_minus_1 word_of_int_via_signed
wivs_mask_def wivs_index_def wivs_overflow_def wivs_least_def wivs_shift_def)
done
lemma Uint_signed_code [code]:
"Rep_uint (Uint_signed i) =
(if i < wivs_least_integer ∨ i ≥ wivs_overflow_integer then Rep_uint (undefined Uint i) else word_of_int (int_of_integer_symbolic i))"
unfolding Uint_signed_def Uint_def int_of_integer_symbolic_def by(simp add: Abs_uint_inverse)
end
text ‹
Avoid @{term Abs_uint} in generated code, use @{term Rep_uint'} instead.
The symbolic implementations for code\_simp use @{term Rep_uint}.
The new destructor @{term Rep_uint'} is executable.
As the simplifier is given the [code abstract] equations literally,
we cannot implement @{term Rep_uint} directly, because that makes code\_simp loop.
If code generation raises Match, some equation probably contains @{term Rep_uint}
([code abstract] equations for @{typ uint} may use @{term Rep_uint} because
these instances will be folded away.)
›
definition Rep_uint' where [simp]: "Rep_uint' = Rep_uint"
lemma Rep_uint'_code [code]: "Rep_uint' x = (BITS n. bit x n)"
unfolding Rep_uint'_def by transfer (simp add: set_bits_bit_eq)
lift_definition Abs_uint' :: "dflt_size word ⇒ uint" is "λx :: dflt_size word. x" .
lemma Abs_uint'_code [code]:
"Abs_uint' x = Uint (integer_of_int (uint x))"
including integer.lifting by transfer simp
declare [[code drop: "term_of_class.term_of :: uint ⇒ _"]]
lemma term_of_uint_code [code]:
defines "TR ≡ typerep.Typerep" and "bit0 ≡ STR ''Numeral_Type.bit0''"
shows
"term_of_class.term_of x =
Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint.uint.Abs_uint'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR (STR ''Uint.dflt_size'') []], TR (STR ''Uint.uint'') []]))
(term_of_class.term_of (Rep_uint' x))"
by(simp add: term_of_anything)
text ‹Important:
We must prevent the reflection oracle (eval-tac) to
use our machine-dependent type.
›
code_printing
type_constructor uint ⇀
(SML) "Word.word" and
(Haskell) "Uint.Word" and
(OCaml) "Uint.t" and
(Scala) "Int" and
(Eval) "*** \"Error: Machine dependent type\" ***" and
(Quickcheck) "Word.word"
| constant dflt_size_integer ⇀
(SML) "(IntInf.fromLarge (Int.toLarge Word.wordSize))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.wordSize" and
(Haskell) "Uint.dflt'_size" and
(OCaml) "Uint.dflt'_size" and
(Scala) "Uint.dflt'_size"
| constant Uint ⇀
(SML) "Word.fromLargeInt (IntInf.toLarge _)" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.fromInt" and
(Haskell) "(Prelude.fromInteger _ :: Uint.Word)" and
(Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint.Word)" and
(Scala) "_.intValue"
| constant Uint_signed ⇀
(OCaml) "Z.to'_int"
| constant "0 :: uint" ⇀
(SML) "(Word.fromInt 0)" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "(Word.fromInt 0)" and
(Haskell) "(0 :: Uint.Word)" and
(OCaml) "0" and
(Scala) "0"
| constant "1 :: uint" ⇀
(SML) "(Word.fromInt 1)" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "(Word.fromInt 1)" and
(Haskell) "(1 :: Uint.Word)" and
(OCaml) "1" and
(Scala) "1"
| constant "plus :: uint ⇒ _ " ⇀
(SML) "Word.+ ((_), (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.+ ((_), (_))" and
(Haskell) infixl 6 "+" and
(OCaml) "Pervasives.(+)" and
(Scala) infixl 7 "+"
| constant "uminus :: uint ⇒ _" ⇀
(SML) "Word.~" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.~" and
(Haskell) "negate" and
(OCaml) "Pervasives.(~-)" and
(Scala) "!(- _)"
| constant "minus :: uint ⇒ _" ⇀
(SML) "Word.- ((_), (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.- ((_), (_))" and
(Haskell) infixl 6 "-" and
(OCaml) "Pervasives.(-)" and
(Scala) infixl 7 "-"
| constant "times :: uint ⇒ _ ⇒ _" ⇀
(SML) "Word.* ((_), (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.* ((_), (_))" and
(Haskell) infixl 7 "*" and
(OCaml) "Pervasives.( * )" and
(Scala) infixl 8 "*"
| constant "HOL.equal :: uint ⇒ _ ⇒ bool" ⇀
(SML) "!((_ : Word.word) = _)" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "!((_ : Word.word) = _)" and
(Haskell) infix 4 "==" and
(OCaml) "(Pervasives.(=):Uint.t -> Uint.t -> bool)" and
(Scala) infixl 5 "=="
| class_instance uint :: equal ⇀
(Haskell) -
| constant "less_eq :: uint ⇒ _ ⇒ bool" ⇀
(SML) "Word.<= ((_), (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.<= ((_), (_))" and
(Haskell) infix 4 "<=" and
(OCaml) "Uint.less'_eq" and
(Scala) "Uint.less'_eq"
| constant "less :: uint ⇒ _ ⇒ bool" ⇀
(SML) "Word.< ((_), (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.< ((_), (_))" and
(Haskell) infix 4 "<" and
(OCaml) "Uint.less" and
(Scala) "Uint.less"
| constant "Bit_Operations.not :: uint ⇒ _" ⇀
(SML) "Word.notb" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.notb" and
(Haskell) "Data'_Bits.complement" and
(OCaml) "Pervasives.lnot" and
(Scala) "_.unary'_~"
| constant "Bit_Operations.and :: uint ⇒ _" ⇀
(SML) "Word.andb ((_),/ (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.andb ((_),/ (_))" and
(Haskell) infixl 7 "Data_Bits..&." and
(OCaml) "Pervasives.(land)" and
(Scala) infixl 3 "&"
| constant "Bit_Operations.or :: uint ⇒ _" ⇀
(SML) "Word.orb ((_),/ (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.orb ((_),/ (_))" and
(Haskell) infixl 5 "Data_Bits..|." and
(OCaml) "Pervasives.(lor)" and
(Scala) infixl 1 "|"
| constant "Bit_Operations.xor :: uint ⇒ _" ⇀
(SML) "Word.xorb ((_),/ (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.xorb ((_),/ (_))" and
(Haskell) "Data'_Bits.xor" and
(OCaml) "Pervasives.(lxor)" and
(Scala) infixl 2 "^"
definition uint_divmod :: "uint ⇒ uint ⇒ uint × uint" where
"uint_divmod x y =
(if y = 0 then (undefined ((div) :: uint ⇒ _) x (0 :: uint), undefined ((mod) :: uint ⇒ _) x (0 :: uint))
else (x div y, x mod y))"
definition uint_div :: "uint ⇒ uint ⇒ uint"
where "uint_div x y = fst (uint_divmod x y)"
definition uint_mod :: "uint ⇒ uint ⇒ uint"
where "uint_mod x y = snd (uint_divmod x y)"
lemma div_uint_code [code]: "x div y = (if y = 0 then 0 else uint_div x y)"
including undefined_transfer unfolding uint_divmod_def uint_div_def
by transfer(simp add: word_div_def)
lemma mod_uint_code [code]: "x mod y = (if y = 0 then x else uint_mod x y)"
including undefined_transfer unfolding uint_mod_def uint_divmod_def
by transfer(simp add: word_mod_def)
definition uint_sdiv :: "uint ⇒ uint ⇒ uint"
where [code del]:
"uint_sdiv x y =
(if y = 0 then undefined ((div) :: uint ⇒ _) x (0 :: uint)
else Abs_uint (Rep_uint x sdiv Rep_uint y))"
definition div0_uint :: "uint ⇒ uint"
where [code del]: "div0_uint x = undefined ((div) :: uint ⇒ _) x (0 :: uint)"
declare [[code abort: div0_uint]]
definition mod0_uint :: "uint ⇒ uint"
where [code del]: "mod0_uint x = undefined ((mod) :: uint ⇒ _) x (0 :: uint)"
declare [[code abort: mod0_uint]]
definition wivs_overflow_uint :: uint
where "wivs_overflow_uint ≡ push_bit (dflt_size - 1) 1"
lemma Rep_uint_wivs_overflow_uint_eq:
‹Rep_uint wivs_overflow_uint = 2 ^ (dflt_size - Suc 0)›
by (simp add: wivs_overflow_uint_def one_uint.rep_eq push_bit_uint.rep_eq uint.word_of_power push_bit_eq_mult)
lemma wivs_overflow_uint_greater_eq_0:
‹wivs_overflow_uint > 0›
apply (simp add: less_uint.rep_eq zero_uint.rep_eq Rep_uint_wivs_overflow_uint_eq)
apply transfer
apply (simp add: take_bit_push_bit push_bit_eq_mult)
done
lemma uint_divmod_code [code]:
"uint_divmod x y =
(if wivs_overflow_uint ≤ y then if x < y then (0, x) else (1, x - y)
else if y = 0 then (div0_uint x, mod0_uint x)
else let q = push_bit 1 (uint_sdiv (drop_bit 1 x) y);
r = x - q * y
in if r ≥ y then (q + 1, r - y) else (q, r))"
proof (cases ‹y = 0›)
case True
moreover have ‹x ≥ 0›
by transfer simp
moreover note wivs_overflow_uint_greater_eq_0
ultimately show ?thesis
by (auto simp add: uint_divmod_def div0_uint_def mod0_uint_def not_less)
next
case False
then show ?thesis
including undefined_transfer
unfolding uint_divmod_def uint_sdiv_def div0_uint_def mod0_uint_def
wivs_overflow_uint_def
apply transfer
apply (simp add: divmod_via_sdivmod push_bit_of_1)
done
qed
lemma uint_sdiv_code [code]:
"Rep_uint (uint_sdiv x y) =
(if y = 0 then Rep_uint (undefined ((div) :: uint ⇒ _) x (0 :: uint))
else Rep_uint x sdiv Rep_uint y)"
unfolding uint_sdiv_def by(simp add: Abs_uint_inverse)
text ‹
Note that we only need a translation for signed division, but not for the remainder
because @{thm uint_divmod_code} computes both with division only.
›
code_printing
constant uint_div ⇀
(SML) "Word.div ((_), (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.div ((_), (_))" and
(Haskell) "Prelude.div"
| constant uint_mod ⇀
(SML) "Word.mod ((_), (_))" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Word.mod ((_), (_))" and
(Haskell) "Prelude.mod"
| constant uint_divmod ⇀
(Haskell) "divmod"
| constant uint_sdiv ⇀
(OCaml) "Pervasives.('/)" and
(Scala) "_ '/ _"
definition uint_test_bit :: "uint ⇒ integer ⇒ bool"
where [code del]:
"uint_test_bit x n =
(if n < 0 ∨ dflt_size_integer ≤ n then undefined (bit :: uint ⇒ _) x n
else bit x (nat_of_integer n))"
lemma test_bit_uint_code [code]:
"bit x n ⟷ n < dflt_size ∧ uint_test_bit x (integer_of_nat n)"
including undefined_transfer integer.lifting unfolding uint_test_bit_def
by (transfer, simp, transfer, simp)
lemma uint_test_bit_code [code]:
"uint_test_bit w n =
(if n < 0 ∨ dflt_size_integer ≤ n then undefined (bit :: uint ⇒ _) w n else bit (Rep_uint w) (nat_of_integer n))"
unfolding uint_test_bit_def by(simp add: bit_uint.rep_eq)
code_printing constant uint_test_bit ⇀
(SML) "Uint.test'_bit" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Uint.test'_bit" and
(Haskell) "Data'_Bits.testBitBounded" and
(OCaml) "Uint.test'_bit" and
(Scala) "Uint.test'_bit"
definition uint_set_bit :: "uint ⇒ integer ⇒ bool ⇒ uint"
where [code del]:
"uint_set_bit x n b =
(if n < 0 ∨ dflt_size_integer ≤ n then undefined (set_bit :: uint ⇒ _) x n b
else set_bit x (nat_of_integer n) b)"
lemma set_bit_uint_code [code]:
"set_bit x n b = (if n < dflt_size then uint_set_bit x (integer_of_nat n) b else x)"
including undefined_transfer integer.lifting unfolding uint_set_bit_def
by (transfer) (auto cong: conj_cong simp add: not_less set_bit_beyond word_size)
lemma uint_set_bit_code [code]:
"Rep_uint (uint_set_bit w n b) =
(if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined (set_bit :: uint ⇒ _) w n b)
else set_bit (Rep_uint w) (nat_of_integer n) b)"
including undefined_transfer integer.lifting unfolding uint_set_bit_def by transfer simp
code_printing constant uint_set_bit ⇀
(SML) "Uint.set'_bit" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Uint.set'_bit" and
(Haskell) "Data'_Bits.setBitBounded" and
(OCaml) "Uint.set'_bit" and
(Scala) "Uint.set'_bit"
definition uint_shiftl :: "uint ⇒ integer ⇒ uint"
where [code del]:
"uint_shiftl x n = (if n < 0 ∨ dflt_size_integer ≤ n then undefined (push_bit :: nat ⇒ uint ⇒ _) x n else push_bit (nat_of_integer n) x)"
lemma shiftl_uint_code [code]: "push_bit n x = (if n < dflt_size then uint_shiftl x (integer_of_nat n) else 0)"
including undefined_transfer integer.lifting unfolding uint_shiftl_def
by (transfer fixing: n) simp
lemma uint_shiftl_code [code]:
"Rep_uint (uint_shiftl w n) =
(if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined (push_bit :: nat ⇒ uint ⇒ _) w n) else push_bit (nat_of_integer n) (Rep_uint w))"
including undefined_transfer integer.lifting unfolding uint_shiftl_def by transfer simp
code_printing constant uint_shiftl ⇀
(SML) "Uint.shiftl" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Uint.shiftl" and
(Haskell) "Data'_Bits.shiftlBounded" and
(OCaml) "Uint.shiftl" and
(Scala) "Uint.shiftl"
definition uint_shiftr :: "uint ⇒ integer ⇒ uint"
where [code del]:
"uint_shiftr x n = (if n < 0 ∨ dflt_size_integer ≤ n then undefined (drop_bit :: nat ⇒ uint ⇒ _) x n else drop_bit (nat_of_integer n) x)"
lemma shiftr_uint_code [code]: "drop_bit n x = (if n < dflt_size then uint_shiftr x (integer_of_nat n) else 0)"
including undefined_transfer integer.lifting unfolding uint_shiftr_def
by (transfer fixing: n) simp
lemma uint_shiftr_code [code]:
"Rep_uint (uint_shiftr w n) =
(if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined (drop_bit :: nat ⇒ uint ⇒ _) w n) else drop_bit (nat_of_integer n) (Rep_uint w))"
including undefined_transfer integer.lifting unfolding uint_shiftr_def by transfer simp
code_printing constant uint_shiftr ⇀
(SML) "Uint.shiftr" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Uint.shiftr" and
(Haskell) "Data'_Bits.shiftrBounded" and
(OCaml) "Uint.shiftr" and
(Scala) "Uint.shiftr"
definition uint_sshiftr :: "uint ⇒ integer ⇒ uint"
where [code del]:
"uint_sshiftr x n =
(if n < 0 ∨ dflt_size_integer ≤ n then undefined signed_drop_bit_uint n x else signed_drop_bit_uint (nat_of_integer n) x)"
lemma sshiftr_uint_code [code]:
"signed_drop_bit_uint n x =
(if n < dflt_size then uint_sshiftr x (integer_of_nat n) else
if bit x wivs_index then -1 else 0)"
including undefined_transfer integer.lifting unfolding uint_sshiftr_def
by transfer(simp add: not_less signed_drop_bit_beyond word_size wivs_index_def)
lemma uint_sshiftr_code [code]:
"Rep_uint (uint_sshiftr w n) =
(if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined signed_drop_bit_uint n w) else signed_drop_bit (nat_of_integer n) (Rep_uint w))"
including undefined_transfer integer.lifting unfolding uint_sshiftr_def by transfer simp
code_printing constant uint_sshiftr ⇀
(SML) "Uint.shiftr'_signed" and
(Eval) "(raise (Fail \"Machine dependent code\"))" and
(Quickcheck) "Uint.shiftr'_signed" and
(Haskell)
"(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint.Int) _)) :: Uint.Word)" and
(OCaml) "Uint.shiftr'_signed" and
(Scala) "Uint.shiftr'_signed"
lemma uint_msb_test_bit: "msb x ⟷ bit (x :: uint) wivs_index"
by transfer (simp add: msb_word_iff_bit wivs_index_def)
lemma msb_uint_code [code]: "msb x ⟷ uint_test_bit x wivs_index_integer"
apply(simp add: uint_test_bit_def uint_msb_test_bit
wivs_index_integer_code dflt_size_integer_def wivs_index_def)
by (metis (full_types) One_nat_def dflt_size(2) less_iff_diff_less_0
nat_of_integer_of_nat of_nat_1 of_nat_diff of_nat_less_0_iff wivs_index_def)
lemma uint_of_int_code [code]: "uint_of_int i = (BITS n. bit i n)"
by transfer (simp add: word_of_int_conv_set_bits)
section ‹Quickcheck setup›
definition uint_of_natural :: "natural ⇒ uint"
where "uint_of_natural x ≡ Uint (integer_of_natural x)"
instantiation uint :: "{random, exhaustive, full_exhaustive}" begin
definition "random_uint ≡ qc_random_cnv uint_of_natural"
definition "exhaustive_uint ≡ qc_exhaustive_cnv uint_of_natural"
definition "full_exhaustive_uint ≡ qc_full_exhaustive_cnv uint_of_natural"
instance ..
end
instantiation uint :: narrowing begin
interpretation quickcheck_narrowing_samples
"λi. (Uint i, Uint (- i))" "0"
"Typerep.Typerep (STR ''Uint.uint'') []" .
definition "narrowing_uint d = qc_narrowing_drawn_from (narrowing_samples d) d"
declare [[code drop: "partial_term_of :: uint itself ⇒ _"]]
lemmas partial_term_of_uint [code] = partial_term_of_code
instance ..
end
end