Theory Independent_Posts_Network
theory Independent_Posts_Network
imports
"Independent_DYNAMIC_Post_Network"
"BD_Security_Compositional.Independent_Secrets"
begin
subsubsection ‹Composition of confidentiality guarantees for different posts›
text ‹We combine ∗‹two› confidentiality guarantees for two different posts in arbitrary nodes of
the network.
For this purpose, we have strengthened the observation power of the security property for
individual posts to make all transitions that update ∗‹other› posts observable, as well as all
transitions that contribute to the state of the trigger (see the observation setup
theories). This guarantees that the confidentiality of one post is independent of actions
affecting other posts, which will allow us to combine security guarantees for different posts.
We now prove a few helper lemmas establishing that now the observable transitions indeed
fully determine the state of the trigger.›
fun obsEffect :: "state ⇒ obs ⇒ state" where
"obsEffect s (Uact (uPost uid p pid pst), ou) = updatePost s uid p pid pst"
| "obsEffect s (Uact (uVisPost uid p pid v), ou) = updateVisPost s uid p pid v"
| "obsEffect s (Sact (sSys uid p), ou) = startSys s uid p"
| "obsEffect s (Cact (cUser uid p uid' p'), ou) = createUser s uid p uid' p'"
| "obsEffect s (Cact (cPost uid p pid), ou) = createPost s uid p pid"
| "obsEffect s (Cact (cFriend uid p uid'), ou) = createFriend s uid p uid'"
| "obsEffect s (Dact (dFriend uid p uid'), ou) = deleteFriend s uid p uid'"
| "obsEffect s (COMact (comSendPost uid p aid pid), ou) = snd (sendPost s uid p aid pid)"
| "obsEffect s (COMact (comReceivePost aid p pid pst uid v), ou) = receivePost s aid p pid pst uid v"
| "obsEffect s (COMact (comReceiveCreateOFriend aid p uid uid'), ou) = receiveCreateOFriend s aid p uid uid'"
| "obsEffect s (COMact (comReceiveDeleteOFriend aid p uid uid'), ou) = receiveDeleteOFriend s aid p uid uid'"
| "obsEffect s _ = s"
fun obsStep :: "state ⇒ obs ⇒ state" where
"obsStep s (a,ou) = (if ou ≠ outErr then obsEffect s (a,ou) else s)"
fun obsSteps :: "state ⇒ obs list ⇒ state" where
"obsSteps s obsl = foldl obsStep s obsl"
definition triggerEq :: "state ⇒ state ⇒ bool" where
"triggerEq s s' ⟷ userIDs s = userIDs s' ∧ postIDs s = postIDs s' ∧ admin s = admin s' ∧
owner s = owner s' ∧ friendIDs s = friendIDs s' ∧ vis s = vis s' ∧
outerPostIDs s = outerPostIDs s' ∧ outerOwner s = outerOwner s' ∧
recvOuterFriendIDs s = recvOuterFriendIDs s' ∧ outerVis s = outerVis s'"
lemma triggerEq_refl[simp]: "triggerEq s s"
and triggerEq_sym: "triggerEq s s' ⟹ triggerEq s' s"
and triggerEq_trans: "triggerEq s s' ⟹ triggerEq s' s'' ⟹ triggerEq s s''"
unfolding triggerEq_def by auto
no_notation relcomp (infixr "O" 75)
context Post
begin
lemma [simp]: "outOK = outPurge ou ⟷ ou = outOK" by (cases ou) auto
lemma [simp]: "sPurge sa = sSys (sUserOfA sa) emptyPass" by (cases sa) auto
lemma sStep_unfold: "sStep s sa = (if userIDs s = []
then (case sa of sSys uid p ⇒ (outOK, startSys s uid p))
else (outErr, s))"
by (cases sa) (auto simp: s_defs)
lemma triggerEq_open:
assumes "triggerEq s s'"
shows "open s ⟷ open s'"
using assms unfolding triggerEq_def open_def by auto
lemma triggerEq_not_γ:
assumes "validTrans (Trans s a ou s')" and "¬γ (Trans s a ou s')"
shows "triggerEq s s'"
proof (cases a)
case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: triggerEq_def s_defs) next
case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def c_defs) next
case (Dact da) then show ?thesis using assms by (cases da) (auto simp: triggerEq_def d_defs) next
case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: triggerEq_def u_defs) next
case (Ract ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (Lact ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (COMact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def com_defs)
qed
lemma triggerEq_obsStep:
assumes "validTrans (Trans s a ou s')" and "γ (Trans s a ou s')" and "triggerEq s s1"
shows "triggerEq s' (obsStep s1 (g (Trans s a ou s')))"
proof (cases a)
case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: triggerEq_def s_defs) next
case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def c_defs) next
case (Dact da) then show ?thesis using assms by (cases da) (auto simp: triggerEq_def d_defs) next
case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: triggerEq_def u_defs) next
case (Ract ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (Lact ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (COMact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def com_defs)
qed
lemma triggerEq_obsSteps:
assumes "validFrom s tr" and "triggerEq s s'"
shows "triggerEq (tgtOfTrFrom s tr) (obsSteps s' (O tr))"
using assms proof (induction tr arbitrary: s s')
case (Nil s s')
then show ?case by auto
next
case (Cons trn tr s s')
then obtain a ou s'' where trn: "trn = Trans s a ou s''" and step: "step s a = (ou, s'')"
by (cases trn) (auto simp: validFrom_Cons)
show ?case proof cases
assume γ: "γ trn"
then have "triggerEq s'' (obsStep s' (g trn))" unfolding trn using step Cons(3) by (auto intro: triggerEq_obsStep)
with Cons.IH[OF _ this] Cons(2) γ trn show ?thesis by (auto simp: validFrom_Cons)
next
assume nγ: "¬ γ trn"
then have "triggerEq s s''" using Cons(2) unfolding trn by (intro triggerEq_not_γ) (auto simp: validFrom_Cons)
with Cons(3) have "triggerEq s'' s'" by (auto intro: triggerEq_sym triggerEq_trans)
with Cons.IH[OF _ this] Cons(2) nγ trn show ?thesis by (auto simp: validFrom_Cons)
qed
qed
end
context Post_RECEIVER
begin
lemma sPurge_simp[simp]: "sPurge sa = sSys (sUserOfA sa) emptyPass" by (cases sa) auto
definition "T_state s' ≡
(∃ uid ∈ UIDs.
uid ∈∈ userIDs s' ∧ PID ∈∈ outerPostIDs s' AID ∧
(uid = admin s' ∨
(AID,outerOwner s' AID PID) ∈∈ recvOuterFriendIDs s' uid ∨
outerVis s' AID PID = PublicV))"
lemma T_T_state: "T trn ⟷ T_state (tgtOf trn)"
by (cases trn) (auto simp: T_state_def)
lemma triggerEq_T:
assumes "triggerEq s s'"
shows "T_state s ⟷ T_state s'"
using assms unfolding triggerEq_def T_state_def by auto
lemma never_T_not_T_state:
assumes "validFrom s tr" and "never T tr" and "¬T_state s"
shows "¬T_state (tgtOfTrFrom s tr)"
using assms by (induction tr arbitrary: s rule: rev_induct) (auto simp: T_T_state)
lemma triggerEq_not_γ:
assumes "validTrans (Trans s a ou s')" and "¬γ (Trans s a ou s')"
shows "triggerEq s s'"
proof (cases a)
case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: triggerEq_def s_defs) next
case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def c_defs) next
case (Dact da) then show ?thesis using assms by (cases da) (auto simp: triggerEq_def d_defs) next
case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: triggerEq_def u_defs) next
case (Ract ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (Lact ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (COMact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def com_defs)
qed
lemma triggerEq_obsStep:
assumes "validTrans (Trans s a ou s')" and "γ (Trans s a ou s')" and "triggerEq s s1"
shows "triggerEq s' (obsStep s1 (g (Trans s a ou s')))"
proof (cases a)
case (Sact sa) then show ?thesis using assms by (cases sa) (auto simp: triggerEq_def s_defs) next
case (Cact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def c_defs) next
case (Dact da) then show ?thesis using assms by (cases da) (auto simp: triggerEq_def d_defs) next
case (Uact ua) then show ?thesis using assms by (cases ua) (auto simp: triggerEq_def u_defs) next
case (Ract ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (Lact ra) then show ?thesis using assms by (auto simp: triggerEq_def) next
case (COMact ca) then show ?thesis using assms by (cases ca) (auto simp: triggerEq_def com_defs)
qed
lemma triggerEq_obsSteps:
assumes "validFrom s tr" and "triggerEq s s'"
shows "triggerEq (tgtOfTrFrom s tr) (obsSteps s' (O tr))"
using assms proof (induction tr arbitrary: s s')
case (Nil s s')
then show ?case by auto
next
case (Cons trn tr s s')
then obtain a ou s'' where trn: "trn = Trans s a ou s''" and step: "step s a = (ou, s'')"
by (cases trn) (auto simp: validFrom_Cons)
show ?case proof cases
assume γ: "γ trn"
then have "triggerEq s'' (obsStep s' (g trn))" unfolding trn using step Cons(3) by (auto intro: triggerEq_obsStep)
with Cons.IH[OF _ this] Cons(2) γ trn show ?thesis by (auto simp: validFrom_Cons)
next
assume nγ: "¬ γ trn"
then have "triggerEq s s''" using Cons(2) unfolding trn by (intro triggerEq_not_γ) (auto simp: validFrom_Cons)
with Cons(3) have "triggerEq s'' s'" by (auto intro: triggerEq_sym triggerEq_trans)
with Cons.IH[OF _ this] Cons(2) nγ trn show ?thesis by (auto simp: validFrom_Cons)
qed
qed
end
context Post_Network
begin
fun nObsStep :: "(apiID ⇒ state) ⇒ (apiID, act × out) nobs ⇒ (apiID ⇒ state)" where
"nObsStep s (LObs aid obs) = s(aid := obsStep (s aid) obs)"
| "nObsStep s (CObs aid1 obs1 aid2 obs2) = s(aid1 := obsStep (s aid1) obs1, aid2 := obsStep (s aid2) obs2)"
fun nObsSteps :: "(apiID ⇒ state) ⇒ (apiID, act × out) nobs list ⇒ (apiID ⇒ state)" where
"nObsSteps s obsl = foldl nObsStep s obsl"
definition nTriggerEq :: "(apiID ⇒ state) ⇒ (apiID ⇒ state) ⇒ bool" where
"nTriggerEq s s' ⟷ (∀aid. triggerEq (s aid) (s' aid))"
lemma nTriggerEq_refl[simp]: "nTriggerEq s s"
and nTriggerEq_sym: "nTriggerEq s s' ⟹ nTriggerEq s' s"
and nTriggerEq_trans: "nTriggerEq s s' ⟹ nTriggerEq s' s'' ⟹ nTriggerEq s s''"
unfolding nTriggerEq_def by (auto intro: triggerEq_sym triggerEq_trans)
lemma nTriggerEq_open:
assumes "nTriggerEq s s'"
shows "∀aid. Iss.open (s aid) ⟷ Iss.open (s' aid)"
using assms unfolding nTriggerEq_def by (auto intro!: Iss.triggerEq_open)
lemma nTriggerEq_not_γ:
assumes "nValidTrans trn" and "¬Net.nγ trn"
shows "nTriggerEq (nSrcOf trn) (nTgtOf trn)"
proof (cases trn)
case (LTrans s aid1 trn1)
with assms show ?thesis using Iss.triggerEq_not_γ Post_RECEIVER.triggerEq_not_γ
by (cases trn1) (auto simp: nTriggerEq_def)
next
case (CTrans s aid1 trn1 aid2 trn2)
with assms show ?thesis
by (auto elim: sync_cases simp: Strong_ObservationSetup_RECEIVER.γ.simps Strong_ObservationSetup_ISSUER.γ.simps)
qed
lemma nTriggerEq_obsStep:
assumes "nValidTrans trn" and "Net.nγ trn" and "nTriggerEq (nSrcOf trn) s1"
shows "nTriggerEq (nTgtOf trn) (nObsStep s1 (Net.ng trn))"
unfolding nTriggerEq_def proof
fix aid
show "triggerEq (nTgtOf trn aid) (nObsStep s1 (Net.ng trn) aid)"
proof (cases trn)
case (LTrans s aid1 trn1)
with assms show ?thesis unfolding nTriggerEq_def
by (cases trn1) (auto intro: Iss.triggerEq_obsStep Post_RECEIVER.triggerEq_obsStep)
next
case (CTrans s aid1 trn1 aid2 trn2)
then have "sync aid1 trn1 aid2 trn2" using assms by auto
moreover obtain a1 ou1 s1' a2 ou2 s2'
where "trn1 = Trans (s aid1) a1 ou1 s1'" and "trn2 = Trans (s aid2) a2 ou2 s2'"
using CTrans assms by (cases trn1, cases trn2) auto
ultimately show ?thesis using CTrans assms unfolding nTriggerEq_def
using Iss.triggerEq_obsStep[of "s aid1" a1 ou1 s1' "s1 aid1"]
using Iss.triggerEq_obsStep[of "s aid2" a2 ou2 s2' "s1 aid2"]
using Post_RECEIVER.triggerEq_obsStep[of "s aid1" a1 ou1 s1' "UIDs aid1" "s1 aid1"]
using Post_RECEIVER.triggerEq_obsStep[of "s aid2" a2 ou2 s2' "UIDs aid2" "s1 aid2"]
by (elim sync_cases) (auto simp: Strong_ObservationSetup_RECEIVER.γ.simps)
qed
qed
lemma triggerEq_obsSteps:
assumes "validFrom s tr" and "nTriggerEq s s'"
shows "nTriggerEq (nTgtOfTrFrom s tr) (nObsSteps s' (O tr))"
using assms proof (induction tr arbitrary: s s')
case (Nil s s')
then show ?case by auto
next
case (Cons trn tr s s')
have tr: "local.validFrom (nTgtOf trn) tr" "nTgtOfTrFrom s (trn # tr) = nTgtOfTrFrom (nTgtOf trn) tr"
using Cons(2) by auto
show ?case proof cases
assume γ: "Net.nγ trn"
then have O: "nObsSteps s' (O (trn # tr)) = nObsSteps (nObsStep s' (Net.ng trn)) (O tr)" by auto
have "nTriggerEq (nTgtOf trn) (nObsStep s' (Net.ng trn))" using Cons(2,3) γ
by (intro nTriggerEq_obsStep) auto
from Cons.IH[OF tr(1) this] show ?thesis unfolding O tr(2) .
next
assume nγ: "¬ Net.nγ trn"
then have O: "O (trn # tr) = O tr" by auto
have "nTriggerEq (nSrcOf trn) (nTgtOf trn)" using nγ Cons(2) by (intro nTriggerEq_not_γ) auto
with Cons(3) have "nTriggerEq (nTgtOf trn) s'" using Cons(2) by (auto intro: nTriggerEq_sym nTriggerEq_trans)
from Cons.IH[OF tr(1) this] show ?thesis unfolding O tr(2) .
qed
qed
lemma O_eq_nTriggerEq:
assumes O: "O tr = O tr'" and tr: "validFrom s (tr ## trn)" and tr': "validFrom s' (tr' ## trn')"
and γ: "Net.nγ trn" and γ': "Net.nγ trn'" and g: "Net.ng trn = Net.ng trn'"
and s_s': "nTriggerEq s s'"
shows "nTriggerEq (nSrcOf trn) (nSrcOf trn')" and "nTriggerEq (nTgtOf trn) (nTgtOf trn')"
proof -
have *: "nTriggerEq (nTgtOfTrFrom s tr) (nObsSteps s' (O tr))" using tr s_s'
by (intro triggerEq_obsSteps) auto
have **: "nTriggerEq (nTgtOfTrFrom s' tr') (nObsSteps s' (O tr'))" using tr'
by (intro triggerEq_obsSteps) auto
from nTriggerEq_trans[OF *[unfolded O] **[THEN nTriggerEq_sym]]
show src: "nTriggerEq (nSrcOf trn) (nSrcOf trn')" using tr tr'
by (auto simp: nTgtOfTrFrom_nTgtOf_last)
have "nTriggerEq (nTgtOf trn) (nObsStep (nSrcOf trn') (Net.ng trn))" using tr γ src
by (intro nTriggerEq_obsStep) auto
moreover have "nTriggerEq (nTgtOf trn') (nObsStep (nSrcOf trn') (Net.ng trn'))" using tr' γ'
by (intro nTriggerEq_obsStep) auto
ultimately show "nTriggerEq (nTgtOf trn) (nTgtOf trn')" unfolding g
by (auto intro: nTriggerEq_sym nTriggerEq_trans)
qed
end
text ‹We are now ready to combine two confidentiality properties for different posts in different
nodes.›
locale Posts_Network =
Post1: Post_Network AIDs UIDs AID1 PID1
+ Post2: Post_Network AIDs UIDs AID2 PID2
for AIDs :: "apiID set"
and UIDs :: "apiID ⇒ userID set"
and AID1 :: "apiID" and AID2 :: "apiID"
and PID1 :: "postID" and PID2 :: "postID"
+
assumes AID1_neq_AID2: "AID1 ≠ AID2"
begin
text ‹The combined observations consist of the local actions of observing users and their outputs,
as usual. We do not consider communication actions here for simplicity, because this would require
us to combine the ∗‹purgings› of observations of the two properties. This is straightforward, but
tedious.›
fun nγ :: "(apiID, state, (state, act, out) trans) ntrans ⇒ bool" where
"nγ (LTrans s aid (Trans _ a _ _)) = (∃ uid. userOfA a = Some uid ∧ uid ∈ UIDs aid ∧ (¬isCOMact a))"
| "nγ (CTrans s aid1 trn1 aid2 trn2) = False"
fun g :: "(state,act,out) trans ⇒ obs" where
"g (Trans _ (Sact sa) ou _) = (Sact (Post1.Iss.sPurge sa), ou)"
| "g (Trans _ a ou _) = (a,ou)"
fun ng :: "(apiID, state, (state, act, out) trans) ntrans ⇒ (apiID, act × out) nobs" where
"ng (LTrans s aid trn) = LObs aid (g trn)"
| "ng (CTrans s aid1 trn1 aid2 trn2) = undefined"
abbreviation "validSystemTrace ≡ Post1.validFrom (λ_. istate)"
text ‹We now instantiate the generic technique for combining security properties with
independent secret sources.›
sublocale BD_Security_TS_Two_Secrets "λ_. istate" Post1.nValidTrans Post1.nSrcOf Post1.nTgtOf
Post1.Net.nφ Post1.nf' Post1.Net.nγ Post1.Net.ng Post1.Net.nT "Post1.B AID1"
Post2.Net.nφ Post2.nf' Post2.Net.nγ Post2.Net.ng Post2.Net.nT "Post2.B AID2"
nγ ng
proof
fix tr trn
assume "nγ trn"
then show "Post1.Net.nγ trn ∧ Post2.Net.nγ trn"
by (cases trn rule: nγ.cases) (auto simp: Strong_ObservationSetup_RECEIVER.γ.simps)
next
fix tr tr' trn trn'
assume tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and γ: "Post1.Net.nγ trn" and γ': "Post1.Net.nγ trn'" and g: "Post1.Net.ng trn = Post1.Net.ng trn'"
from tr tr' have trn: "Post1.nValidTrans trn" "Post1.nValidTrans trn'" by auto
show "nγ trn = nγ trn'" proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where trn': "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
then show ?thesis using LTrans g
by (cases trn1 rule: Strong_ObservationSetup_ISSUER.g.cases;
cases trn1' rule: Strong_ObservationSetup_ISSUER.g.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Post_RECEIVER.sPurge_simp)
next
case (CTrans s aid1 trn1 aid2 trn2)
then show ?thesis using g by (cases trn') auto
qed
next
fix tr tr' trn trn'
assume O: "Post1.O tr = Post1.O tr'" and γ: "Post1.Net.nγ trn" "Post1.Net.nγ trn'"
and tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and g: "Post1.Net.ng trn = Post1.Net.ng trn'" and γ: "nγ trn" and γ': "nγ trn'"
then have trn: "Post1.nValidTrans trn" and trn': "Post1.nValidTrans trn'" by auto
show "ng trn = ng trn'" proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
then show ?thesis using LTrans γ γ' g trn trn'
by (cases "(aid1,trn1)" rule: Post1.tgtNodeOf.cases;
cases "(aid1,trn1')" rule: Post1.tgtNodeOf.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Post_RECEIVER.sPurge_simp
simp: Post1.Iss.sStep_unfold split: sActt.splits)
next
case (CTrans s aid1 trn1 aid2 trn2)
with γ show ?thesis by auto
qed
next
fix tr tr' trn trn'
assume tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and γ: "Post2.Net.nγ trn" and γ': "Post2.Net.nγ trn'" and g: "Post2.Net.ng trn = Post2.Net.ng trn'"
from tr tr' have trn: "Post1.nValidTrans trn" "Post1.nValidTrans trn'" by auto
show "nγ trn = nγ trn'" proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where trn': "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
then show ?thesis using LTrans g
by (cases trn1 rule: Strong_ObservationSetup_ISSUER.g.cases;
cases trn1' rule: Strong_ObservationSetup_ISSUER.g.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Post_RECEIVER.sPurge_simp)
next
case (CTrans s aid1 trn1 aid2 trn2)
then show ?thesis using g by (cases trn') auto
qed
next
fix tr tr' trn trn'
assume O: "Post2.O tr = Post2.O tr'" and γ: "Post2.Net.nγ trn" "Post2.Net.nγ trn'"
and tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and g: "Post2.Net.ng trn = Post2.Net.ng trn'" and γ: "nγ trn" and γ': "nγ trn'"
then have trn: "Post1.nValidTrans trn" and trn': "Post1.nValidTrans trn'" by auto
show "ng trn = ng trn'" proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
then show ?thesis using LTrans γ γ' g trn trn'
by (cases "(aid1,trn1)" rule: Post1.tgtNodeOf.cases;
cases "(aid1,trn1')" rule: Post1.tgtNodeOf.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Post_RECEIVER.sPurge_simp
simp: Post1.Iss.sStep_unfold split: sActt.splits)
next
case (CTrans s aid1 trn1 aid2 trn2)
with γ show ?thesis by auto
qed
next
fix tr trn
assume "validSystemTrace (tr ## trn)" and nφ: "Post2.Net.nφ trn"
then have trn: "Post1.nValidTrans trn" by auto
show "Post1.Net.nγ trn" proof (cases trn)
case (LTrans s aid1 trn1)
then obtain a ou s1' where trn1: "trn1 = Trans (s aid1) a ou s1'" using trn by (cases trn1) auto
then show ?thesis using nφ trn LTrans AID1_neq_AID2
using Post2.Iss.triggerEq_not_γ[THEN Post2.Iss.triggerEq_open]
by (cases "Post2.Iss.γ trn1") (auto simp: Post2.φ_defs Strong_ObservationSetup_RECEIVER.γ.simps)
next
case (CTrans s aid1 trn1 aid2 trn2)
with trn have "Post1.sync aid1 trn1 aid2 trn2" by auto
then show ?thesis using trn CTrans
by (elim Post1.sync_cases) (auto simp: Strong_ObservationSetup_RECEIVER.γ.simps)
qed
next
fix tr tr' trn trn'
assume O: "Post1.O tr = Post1.O tr'" and γ: "Post1.Net.nγ trn" "Post1.Net.nγ trn'"
and tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and g: "Post1.Net.ng trn = Post1.Net.ng trn'"
have op: "∀aid. Post2.Iss.open (Post1.nSrcOf trn aid) ⟷ Post2.Iss.open (Post1.nSrcOf trn' aid)"
using O γ tr tr' g by (intro Post2.nTriggerEq_open Post1.O_eq_nTriggerEq) auto
have op': "∀aid. Post2.Iss.open (Post1.nTgtOf trn aid) ⟷ Post2.Iss.open (Post1.nTgtOf trn' aid)"
using O γ tr tr' g by (intro Post2.nTriggerEq_open Post1.O_eq_nTriggerEq) auto
have trn: "Post1.nValidTrans trn" and trn': "Post1.nValidTrans trn'" using tr tr' by auto
show "Post2.Net.nφ trn = Post2.Net.nφ trn'"
proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where s': "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
moreover then have "srcOf trn1 = s aid1" "srcOf trn1' = s' aid1"
"tgtOf trn1 = Post1.nTgtOf trn aid1" "tgtOf trn1' = Post1.nTgtOf trn' aid1"
using LTrans trn trn' by auto
ultimately show ?thesis using LTrans op op' g AID1_neq_AID2
by (cases trn1 rule: Post.φ.cases; cases trn1' rule: Post.φ.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Strong_ObservationSetup_RECEIVER.comPurge.simps
Post.φ.simps Post_RECEIVER.φ.simps)
next
case (CTrans s aid1 trn1 aid2 trn2)
then obtain s' trn1' trn2' where CTrans': "trn' = CTrans s' aid1 trn1' aid2 trn2'"
using g by (cases trn') auto
have "Post1.sync aid1 trn1 aid2 trn2" "Post1.sync aid1 trn1' aid2 trn2'"
using CTrans CTrans' trn trn' by auto
then show ?thesis using CTrans CTrans' trn trn' op op' g
by (elim Post1.sync_cases)
(auto simp: Post_RECEIVER.φ.simps Strong_ObservationSetup_RECEIVER.g.simps
Strong_ObservationSetup_RECEIVER.comPurge.simps)
qed
next
fix tr tr' trn trn'
assume O: "Post1.O tr = Post1.O tr'" and γ: "Post1.Net.nγ trn" "Post1.Net.nγ trn'"
and tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and g: "Post1.Net.ng trn = Post1.Net.ng trn'"
and φ: "Post2.Net.nφ trn" and φ': "Post2.Net.nφ trn'"
have op: "∀aid. Post2.Iss.open (Post1.nSrcOf trn aid) ⟷ Post2.Iss.open (Post1.nSrcOf trn' aid)"
using O γ tr tr' g by (intro Post2.nTriggerEq_open Post1.O_eq_nTriggerEq) auto
have op': "∀aid. Post2.Iss.open (Post1.nTgtOf trn aid) ⟷ Post2.Iss.open (Post1.nTgtOf trn' aid)"
using O γ tr tr' g by (intro Post2.nTriggerEq_open Post1.O_eq_nTriggerEq) auto
have trn: "Post1.nValidTrans trn" and trn': "Post1.nValidTrans trn'" using tr tr' by auto
show "Post2.nf' trn = Post2.nf' trn'"
proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where s': "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
moreover then have "srcOf trn1 = s aid1" "srcOf trn1' = s' aid1"
"tgtOf trn1 = Post1.nTgtOf trn aid1" "tgtOf trn1' = Post1.nTgtOf trn' aid1"
using LTrans trn trn' by auto
ultimately show ?thesis using LTrans φ φ' op' g AID1_neq_AID2
by (cases trn1 rule: Post.φ.cases; cases trn1' rule: Post.f.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Strong_ObservationSetup_RECEIVER.comPurge.simps
Post.φ.simps Post_RECEIVER.φ.simps)
next
case (CTrans s aid1 trn1 aid2 trn2)
then obtain s' trn1' trn2' where CTrans': "trn' = CTrans s' aid1 trn1' aid2 trn2'"
using g by (cases trn') auto
then have trn1: "validTrans trn1" and trn1': "validTrans trn1'" using trn trn' CTrans by auto
have states: "tgtOf trn1 = Post1.nTgtOf trn aid1" "tgtOf trn2 = Post1.nTgtOf trn aid2"
"tgtOf trn1' = Post1.nTgtOf trn' aid1" "tgtOf trn2' = Post1.nTgtOf trn' aid2"
using trn trn' CTrans CTrans' by auto
have "Post1.sync aid1 trn1 aid2 trn2" "Post1.sync aid1 trn1' aid2 trn2'"
using CTrans CTrans' trn trn' by auto
then show ?thesis using CTrans CTrans' op' g states AID1_neq_AID2
by (elim Post1.sync_cases[OF _ trn1] Post1.sync_cases[OF _ trn1'])
(auto simp: Post_RECEIVER.φ.simps Strong_ObservationSetup_RECEIVER.g.simps
Strong_ObservationSetup_RECEIVER.comPurge.simps)
qed
next
fix tr trn
assume "validSystemTrace (tr ## trn)" and nφ: "Post1.Net.nφ trn"
then have trn: "Post1.nValidTrans trn" by auto
show "Post2.Net.nγ trn" proof (cases trn)
case (LTrans s aid1 trn1)
then obtain a ou s1' where trn1: "trn1 = Trans (s aid1) a ou s1'" using trn by (cases trn1) auto
then show ?thesis using nφ trn LTrans AID1_neq_AID2
using Post1.Iss.triggerEq_not_γ[THEN Post1.Iss.triggerEq_open]
by (cases "Post1.Iss.γ trn1") (auto simp: Post1.φ_defs Strong_ObservationSetup_RECEIVER.γ.simps)
next
case (CTrans s aid1 trn1 aid2 trn2)
with trn have "Post1.sync aid1 trn1 aid2 trn2" by auto
then show ?thesis
using trn CTrans
by (elim Post1.sync_cases) (auto simp: Strong_ObservationSetup_RECEIVER.γ.simps)
qed
next
fix tr tr' trn trn'
assume O: "Post2.O tr = Post2.O tr'" and γ: "Post2.Net.nγ trn" "Post2.Net.nγ trn'"
and tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and g: "Post2.Net.ng trn = Post2.Net.ng trn'"
have op: "∀aid. Post1.Iss.open (Post1.nSrcOf trn aid) ⟷ Post1.Iss.open (Post1.nSrcOf trn' aid)"
using O γ tr tr' g by (intro Post1.nTriggerEq_open Post2.O_eq_nTriggerEq) auto
have op': "∀aid. Post1.Iss.open (Post1.nTgtOf trn aid) ⟷ Post1.Iss.open (Post1.nTgtOf trn' aid)"
using O γ tr tr' g by (intro Post1.nTriggerEq_open Post2.O_eq_nTriggerEq) auto
have trn: "Post1.nValidTrans trn" and trn': "Post1.nValidTrans trn'" using tr tr' by auto
show "Post1.Net.nφ trn = Post1.Net.nφ trn'"
proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where s': "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
moreover then have "srcOf trn1 = s aid1" "srcOf trn1' = s' aid1"
"tgtOf trn1 = Post1.nTgtOf trn aid1" "tgtOf trn1' = Post1.nTgtOf trn' aid1"
using LTrans trn trn' by auto
ultimately show ?thesis using LTrans op op' g AID1_neq_AID2
by (cases trn1 rule: Post.φ.cases; cases trn1' rule: Post.φ.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Strong_ObservationSetup_RECEIVER.comPurge.simps
Post.φ.simps Post_RECEIVER.φ.simps)
next
case (CTrans s aid1 trn1 aid2 trn2)
then obtain s' trn1' trn2' where CTrans': "trn' = CTrans s' aid1 trn1' aid2 trn2'"
using g by (cases trn') auto
have "Post1.sync aid1 trn1 aid2 trn2" "Post1.sync aid1 trn1' aid2 trn2'"
using CTrans CTrans' trn trn' by auto
then show ?thesis using CTrans CTrans' trn trn' op op' g
by (elim Post1.sync_cases)
(auto simp: Post_RECEIVER.φ.simps Strong_ObservationSetup_RECEIVER.g.simps
Strong_ObservationSetup_RECEIVER.comPurge.simps)
qed
next
fix tr tr' trn trn'
assume O: "Post2.O tr = Post2.O tr'" and γ: "Post2.Net.nγ trn" "Post2.Net.nγ trn'"
and tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and g: "Post2.Net.ng trn = Post2.Net.ng trn'"
and φ: "Post1.Net.nφ trn" and φ': "Post1.Net.nφ trn'"
have op: "∀aid. Post1.Iss.open (Post1.nSrcOf trn aid) ⟷ Post1.Iss.open (Post1.nSrcOf trn' aid)"
using O γ tr tr' g by (intro Post1.nTriggerEq_open Post2.O_eq_nTriggerEq) auto
have op': "∀aid. Post1.Iss.open (Post1.nTgtOf trn aid) ⟷ Post1.Iss.open (Post1.nTgtOf trn' aid)"
using O γ tr tr' g by (intro Post1.nTriggerEq_open Post2.O_eq_nTriggerEq) auto
have trn: "Post1.nValidTrans trn" and trn': "Post1.nValidTrans trn'" using tr tr' by auto
show "Post1.nf' trn = Post1.nf' trn'"
proof (cases trn)
case (LTrans s aid1 trn1)
then obtain s' trn1' where s': "trn' = LTrans s' aid1 trn1'" using g by (cases trn') auto
moreover then have "srcOf trn1 = s aid1" "srcOf trn1' = s' aid1"
"tgtOf trn1 = Post1.nTgtOf trn aid1" "tgtOf trn1' = Post1.nTgtOf trn' aid1"
using LTrans trn trn' by auto
ultimately show ?thesis using LTrans φ φ' op' g AID1_neq_AID2
by (cases trn1 rule: Post.φ.cases; cases trn1' rule: Post.f.cases)
(auto simp: Strong_ObservationSetup_RECEIVER.g.simps Strong_ObservationSetup_RECEIVER.comPurge.simps
Post.φ.simps Post_RECEIVER.φ.simps)
next
case (CTrans s aid1 trn1 aid2 trn2)
then obtain s' trn1' trn2' where CTrans': "trn' = CTrans s' aid1 trn1' aid2 trn2'"
using g by (cases trn') auto
then have trn1: "validTrans trn1" and trn1': "validTrans trn1'" using trn trn' CTrans by auto
have states: "tgtOf trn1 = Post1.nTgtOf trn aid1" "tgtOf trn2 = Post1.nTgtOf trn aid2"
"tgtOf trn1' = Post1.nTgtOf trn' aid1" "tgtOf trn2' = Post1.nTgtOf trn' aid2"
using trn trn' CTrans CTrans' by auto
have "Post1.sync aid1 trn1 aid2 trn2" "Post1.sync aid1 trn1' aid2 trn2'"
using CTrans CTrans' trn trn' by auto
then show ?thesis using CTrans CTrans' op' g states AID1_neq_AID2
by (elim Post1.sync_cases[OF _ trn1] Post1.sync_cases[OF _ trn1'])
(auto simp: Post_RECEIVER.φ.simps Strong_ObservationSetup_RECEIVER.g.simps
Strong_ObservationSetup_RECEIVER.comPurge.simps)
qed
next
fix tr trn
assume nT_trn: "Post2.Net.nT trn" and tr: "validSystemTrace (tr ## trn)"
and nT_tr: "never Post2.Net.nT tr"
show "Post1.Net.nγ trn" proof (cases trn)
case (CTrans s aid1 trn1 aid2 trn2)
then have "Post1.sync aid1 trn1 aid2 trn2" using tr by auto
then show ?thesis using tr CTrans
by (elim Post1.sync_cases) (auto simp: Strong_ObservationSetup_RECEIVER.γ.simps)
next
case (LTrans s aid1 trn1)
then obtain a ou s1' where trn1: "trn1 = Trans (s aid1) a ou s1'" using tr by (cases trn1) auto
interpret R: Post_RECEIVER "UIDs aid1" PID2 AID2 .
interpret R': Post_RECEIVER "UIDs aid1" PID1 AID1 .
from nT_trn have aid1: "aid1 ≠ AID2" and Ttgt: "R.T_state s1'"
using LTrans R.T_T_state trn1 by auto
have decomp_tr: "Post1.Iss.validFrom istate (Post1.decomp (tr ## trn) aid1)"
using LTrans tr Post1.validFrom_lValidFrom[of "λ_. istate"] by auto
then have s_aid1: "s aid1 = tgtOfTrFrom istate (Post1.decomp tr aid1)"
using LTrans trn1 unfolding Post1.decomp_append
by (auto simp: Post1.Iss.validFrom_Cons Post1.Iss.validFrom_append)
have "¬R.T_state (s aid1)" unfolding s_aid1 proof (intro R.never_T_not_T_state)
show "Post1.Iss.validFrom istate (Post1.decomp tr aid1)" using decomp_tr
unfolding Post1.decomp_append by (auto simp: Post1.Iss.validFrom_append)
show "never R.T (Post1.decomp tr aid1)" using aid1 Post2.Net.nTT_TT[OF nT_tr, of aid1] by auto
show "¬ R.T_state istate" unfolding istate_def R.T_state_def by auto
qed
then have s_s1': "¬triggerEq (s aid1) s1'" using Ttgt by (auto simp: triggerEq_def R.T_state_def)
show ?thesis proof (cases "aid1 = AID1")
case True
then show ?thesis using s_s1' Post1.Iss.triggerEq_not_γ tr unfolding trn1 LTrans
by (cases "Post1.Iss.γ (Trans (s aid1) a ou s1')") auto
next
case False
then show ?thesis using s_s1' R'.triggerEq_not_γ tr unfolding trn1 LTrans
by (cases "R'.γ (Trans (s aid1) a ou s1')") auto
qed
qed
next
fix tr tr' trn trn'
assume O: "Post1.O tr = Post1.O tr'" and γ: "Post1.Net.nγ trn" "Post1.Net.nγ trn'"
and tr: "validSystemTrace (tr ## trn)" and tr': "validSystemTrace (tr' ## trn')"
and g: "Post1.Net.ng trn = Post1.Net.ng trn'"
have op': "Post1.nTriggerEq (Post1.nTgtOf trn) (Post1.nTgtOf trn')"
using O γ tr tr' g by (intro Post1.O_eq_nTriggerEq) auto
have trn: "Post1.nValidTrans trn" and trn': "Post1.nValidTrans trn'" using tr tr' by auto
show "Post2.Net.nT trn = Post2.Net.nT trn'" proof (cases trn)
case (LTrans s aid1 trn1)
moreover then obtain s' trn1' where LTrans': "trn' = LTrans s' aid1 trn1'"
using g by (cases trn') auto
ultimately have t: "triggerEq (tgtOf trn1) (tgtOf trn1')" using op' unfolding Post1.nTriggerEq_def
by auto
interpret R: Post_RECEIVER "UIDs aid1" PID2 AID2 .
from t have "R.T_state (tgtOf trn1) ⟷ R.T_state (tgtOf trn1')" by (intro R.triggerEq_T)
then show ?thesis using LTrans LTrans' by (auto simp: R.T_T_state)
next
case (CTrans s aid1 trn1 aid2 trn2)
moreover then obtain s' trn1' trn2' where CTrans': "trn' = CTrans s' aid1 trn1' aid2 trn2'"
using g by (cases trn') auto
moreover then have "aid1 ≠ aid2" using trn' by auto
ultimately have t: "triggerEq (tgtOf trn1) (tgtOf trn1')" "triggerEq (tgtOf trn2) (tgtOf trn2')"
using op' unfolding Post1.nTriggerEq_def by auto
interpret R1: Post_RECEIVER "UIDs aid1" PID2 AID2 .
interpret R2: Post_RECEIVER "UIDs aid2" PID2 AID2 .
from t have "R1.T_state (tgtOf trn1) ⟷ R1.T_state (tgtOf trn1')"
"R2.T_state (tgtOf trn2) ⟷ R2.T_state (tgtOf trn2')"
by (auto intro!: R1.triggerEq_T R2.triggerEq_T)
then show ?thesis using CTrans CTrans' by (auto simp: R1.T_T_state R2.T_T_state)
qed
qed
theorem two_posts_secure:
"secure"
using Post1.secure Post2.secure
by (rule two_secure)
end
end