Theory Catoid_Lifting
section ‹Lifting catoids to modal powerset quantales›
theory Catoid_Lifting
imports Catoid Quantales_Converse.Modal_Quantale
begin
instantiation set :: (catoid) monoid_mult
begin
definition one_set :: "'a set" where
"1 = sfix"
definition times_set :: "'a set ⇒ 'a set ⇒ 'a set" where
"X * Y = X ⋆ Y"
instance
apply intro_classes
unfolding times_set_def one_set_def
apply (simp add: conv_assoc)
using stopp.conv_unt apply blast
by (metis stfix_set stopp.conv_uns)
end
instantiation set :: (catoid) semiring_one_zero
begin
definition zero_set :: "'a set" where
"zero_set = {}"
definition plus_set :: "'a set ⇒ 'a set ⇒ 'a set" where
"X + Y = X ∪ Y"
instance
apply intro_classes
unfolding times_set_def one_set_def zero_set_def plus_set_def conv_exp
apply safe
apply blast
apply blast
apply blast
apply blast
apply (metis Dst empty_iff singletonD stopp.st_compat stopp.t_absorb)
apply (metis (mono_tags) insertI1 mem_Collect_eq stopp.t_absorb stopp.tt_idem)
using Dst singletonD apply fastforce
apply (metis (mono_tags) insertI1 mem_Collect_eq stopp.s_absorb stopp.ts_compat)
apply blast
apply blast
apply blast
by blast
end
instantiation set :: (catoid) dioid
begin
instance
by intro_classes (auto simp: plus_set_def)
end
instantiation set :: (local_catoid) domain_semiring
begin
definition domain_op_set :: "'a set ⇒ 'a set" where
"dom X = Src X"
instance
apply intro_classes
apply (simp add: Catoid_Lifting.domain_op_set_def times_set_def)
apply (simp add: domain_op_set_def times_set_def)
apply (metis (full_types) domain_op_set_def less_eq_def one_set_def stopp.Tgt_subid)
apply (simp add: Catoid_Lifting.domain_op_set_def zero_set_def)
by (simp add: Catoid_Lifting.domain_op_set_def image_Un plus_set_def)
end
instantiation set :: (local_catoid) range_semiring
begin
definition range_op_set :: "'a set ⇒ 'a set" where
"cod X = Tgt X"
instance
apply intro_classes
apply (simp add: Catoid_Lifting.range_op_set_def times_set_def)
apply (simp add: range_op_set_def times_set_def)
apply (metis (mono_tags, lifting) Catoid_Lifting.range_op_set_def boolean_algebra.disj_one_right image_Un one_set_def plus_set_def stfix_set stopp.sfix_im)
apply (simp add: range_op_set_def zero_set_def)
by (simp add: image_Un plus_set_def range_op_set_def)
end
instantiation set :: (local_catoid) dr_modal_semiring
begin
instance
by intro_classes (auto simp add: domain_op_set_def range_op_set_def)
end
instantiation set :: (catoid) quantale
begin
instance
by (intro_classes, auto simp: times_set_def conv_exp)
end
instantiation set :: (local_catoid) domain_quantale
begin
instance
by intro_classes (simp_all, auto simp add: domain_op_set_def image_Un)
end
instantiation set :: (local_catoid) codomain_quantale
begin
instance
by intro_classes (simp_all, auto simp add: range_op_set_def image_Un)
end
instantiation set :: (local_catoid) dc_modal_quantale
begin
instance
by intro_classes simp_all
end
end