Theory Case_Labeling
theory Case_Labeling
imports Main
keywords "print_nested_cases" :: diag
begin
section ‹Labeling Subgoals›
context begin
qualified type_synonym prg_ctxt_var = unit
qualified type_synonym prg_ctxt = "string × nat × prg_ctxt_var list"
text ‹Embed variables in terms›
qualified definition VAR :: "'v ⇒ prg_ctxt_var" where
"VAR _ = ()"
text ‹Labeling of a subgoal›
qualified definition VC :: "prg_ctxt list ⇒ 'a ⇒ 'a" where
"VC ct P ≡ P"
text ‹Computing the statement numbers and context›
qualified definition CTXT :: "nat ⇒ prg_ctxt list ⇒ nat ⇒ 'a ⇒ 'a" where
"CTXT inp ct outp P ≡ P"
text ‹Labeling of a term binding or assumption›
qualified definition BIND :: "string ⇒ nat ⇒ 'a ⇒ 'a" where
"BIND name inp P ≡ P"
text ‹Hierarchy labeling›
qualified definition HIER :: "prg_ctxt list ⇒ 'a ⇒ 'a" where
"HIER ct P ≡ P"
text ‹Split Labeling. This is used as an assumption›
qualified definition SPLIT :: "'a ⇒ 'a ⇒ bool" where
"SPLIT v w ≡ v = w"
text ‹Disambiguation Labeling. This is used as an assumption›
qualified definition DISAMBIG :: "nat ⇒ bool" where
"DISAMBIG n ≡ True"
lemmas LABEL_simps = BIND_def CTXT_def HIER_def SPLIT_def VC_def
lemma Initial_Label: "CTXT 0 [] outp P ⟹ P"
by (simp add: Case_Labeling.CTXT_def)
lemma
BIND_I: "P ⟹ BIND name inp P" and
BIND_D: "BIND name inp P ⟹ P" and
VC_I: "P ⟹ VC ct P"
unfolding Case_Labeling.BIND_def Case_Labeling.VC_def .
lemma DISAMBIG_I: "(DISAMBIG n ⟹ P) ⟹ P"
by (auto simp: DISAMBIG_def Case_Labeling.VC_def)
lemma DISAMBIG_E: "(DISAMBIG n ⟹ P) ⟹ P"
by (auto simp: DISAMBIG_def)
text ‹Lemmas for the tuple postprocessing›
lemma SPLIT_reflection: "SPLIT x y ⟹ (x ≡ y)"
unfolding SPLIT_def by (rule eq_reflection)
lemma rev_SPLIT_reflection: "(x ≡ y) ⟹ SPLIT x y"
unfolding SPLIT_def ..
lemma SPLIT_sym: "SPLIT x y ⟹ SPLIT y x"
unfolding SPLIT_def by (rule sym)
lemma SPLIT_thin_refl: "⟦SPLIT x x; PROP W⟧ ⟹ PROP W" .
lemma SPLIT_subst: "⟦SPLIT x y; P x⟧ ⟹ P y"
unfolding SPLIT_def by hypsubst
lemma SPLIT_prodE:
assumes "SPLIT (x1, y1) (x2, y2)"
obtains "SPLIT x1 x2" "SPLIT y1 y2"
using assms unfolding SPLIT_def by auto
end
text ‹
The labeling constants were qualified to not interfere with any other theory.
The following locale allows using a nice syntax in other theories
›
locale Labeling_Syntax begin
abbreviation VAR where "VAR ≡ Case_Labeling.VAR"
abbreviation VC ("V⟨(2_,_:/ _)⟩") where "VC bl ct ≡ Case_Labeling.VC (bl # ct)"
abbreviation CTXT ("C⟨(2_,_,_:/ _⟩)") where "CTXT ≡ Case_Labeling.CTXT"
abbreviation BIND ("B⟨(2_,_:/ _⟩)") where "BIND ≡ Case_Labeling.BIND"
abbreviation HIER ("H⟨(2_:/ _⟩)") where "HIER ≡ Case_Labeling.HIER"
abbreviation SPLIT where "SPLIT ≡ Case_Labeling.SPLIT"
end
text ‹Lemmas for converting terms from @{term Suc}/@{term "0::nat"} notation to numerals›
lemma Suc_numerals_conv:
"Suc 0 = Numeral1"
"Suc (numeral n) = numeral (n + num.One)"
by auto
lemmas Suc_numeral_simps = Suc_numerals_conv add_num_simps
section ‹Casify›
text ‹
Introduces a command @{command print_nested_cases}. This is similar to @{command print_cases},
but shows also the nested cases.
›
ML_file ‹print_nested_cases.ML›
ML_file ‹util.ML›
text ‹Introduces the proof method.›
ML_file ‹casify.ML›
ML ‹
val casify_defs = Casify.Options { simp_all_cases=true, split_right_only=true, protect_subgoals=false }
›
method_setup prepare_labels = ‹
Scan.succeed (fn ctxt => SIMPLE_METHOD (ALLGOALS (Casify.prepare_labels_tac ctxt)))
› "VCG labelling: prepare labels"
method_setup casify = ‹Casify.casify_method_setup casify_defs›
"VCG labelling: Turn the labels into cases"
end