Theory Rewriting_Sterm
section ‹Sequential pattern matching›
theory Rewriting_Sterm
imports Rewriting_Pterm
begin
type_synonym srule = "name × sterm"
abbreviation closed_srules :: "srule list ⇒ bool" where
"closed_srules ≡ list_all (closed ∘ snd)"
primrec srule :: "srule ⇒ bool" where
"srule (_, rhs) ⟷ wellformed rhs ∧ closed rhs ∧ is_abs rhs"
lemma sruleI[intro!]: "wellformed rhs ⟹ closed rhs ⟹ is_abs rhs ⟹ srule (name, rhs)"
by simp
locale srules = constants C_info "fst |`| fset_of_list rs" for C_info and rs :: "srule list" +
assumes all_rules: "list_all srule rs"
assumes distinct: "distinct (map fst rs)"
assumes not_shadows: "list_all (λ(_, rhs). ¬ shadows_consts rhs) rs"
assumes swelldefined_rs: "list_all (λ(_, rhs). welldefined rhs) rs"
begin
lemma map: "is_map (set rs)"
using distinct by (rule distinct_is_map)
lemma clausesE:
assumes "(name, rhs) ∈ set rs"
obtains cs where "rhs = Sabs cs"
proof -
from assms have "is_abs rhs"
using all_rules unfolding list_all_iff by auto
then obtain cs where "rhs = Sabs cs"
by (cases rhs) (auto simp: is_abs_def term_cases_def)
with that show thesis .
qed
end
subsubsection ‹Rewriting›
inductive srewrite_step where
cons_match: "srewrite_step ((name, rhs) # rest) name rhs" |
cons_nomatch: "name ≠ name' ⟹ srewrite_step rs name rhs ⟹ srewrite_step ((name', rhs') # rs) name rhs"
lemma srewrite_stepI0:
assumes "(name, rhs) ∈ set rs" "is_map (set rs)"
shows "srewrite_step rs name rhs"
using assms proof (induction rs)
case (Cons r rs)
then obtain name' rhs' where "r = (name', rhs')" by force
show ?case
proof (cases "name = name'")
case False
show ?thesis
unfolding ‹r = _›
apply (rule srewrite_step.cons_nomatch)
subgoal by fact
apply (rule Cons)
using False Cons(2) ‹r = _› apply force
using Cons(3) unfolding is_map_def by auto
next
case True
have "rhs = rhs'"
apply (rule is_mapD)
apply fact
unfolding ‹r = _›
using Cons(2) ‹r = _› apply simp
using True apply simp
done
show ?thesis
unfolding ‹r = _› ‹name = _› ‹rhs = _›
by (rule srewrite_step.cons_match)
qed
qed auto
lemma (in srules) srewrite_stepI: "(name, rhs) ∈ set rs ⟹ srewrite_step rs name rhs"
using map
by (metis srewrite_stepI0)
hide_fact srewrite_stepI0
inductive srewrite :: "srule list ⇒ sterm ⇒ sterm ⇒ bool" ("_/ ⊢⇩s/ _ ⟶/ _" [50,0,50] 50) for rs where
step: "srewrite_step rs name rhs ⟹ rs ⊢⇩s Sconst name ⟶ rhs" |
beta: "rewrite_first cs t t' ⟹ rs ⊢⇩s Sabs cs $⇩s t ⟶ t'" |
"fun": "rs ⊢⇩s t ⟶ t' ⟹ rs ⊢⇩s t $⇩s u ⟶ t' $⇩s u" |
arg: "rs ⊢⇩s u ⟶ u' ⟹ rs ⊢⇩s t $⇩s u ⟶ t $⇩s u'"
code_pred srewrite .
abbreviation srewrite_rt :: "srule list ⇒ sterm ⇒ sterm ⇒ bool" ("_/ ⊢⇩s/ _ ⟶*/ _" [50,0,50] 50) where
"srewrite_rt rs ≡ (srewrite rs)⇧*⇧*"
global_interpretation srewrite: rewriting "srewrite rs" for rs
by standard (auto intro: srewrite.intros simp: app_sterm_def)+
code_pred (modes: i ⇒ i ⇒ o ⇒ bool) srewrite_step .
code_pred (modes: i ⇒ i ⇒ o ⇒ bool) srewrite .
subsubsection ‹Translation from @{typ pterm} to @{typ sterm}›
text ‹
In principle, any function of type @{typ ‹('a × 'b) fset ⇒ ('a × 'b) list›} that orders
by keys would do here. However, For simplicity's sake, we choose a fixed one
(@{const ordered_fmap}) here.
›
primrec pterm_to_sterm :: "pterm ⇒ sterm" where
"pterm_to_sterm (Pconst name) = Sconst name" |
"pterm_to_sterm (Pvar name) = Svar name" |
"pterm_to_sterm (t $⇩p u) = pterm_to_sterm t $⇩s pterm_to_sterm u" |
"pterm_to_sterm (Pabs cs) = Sabs (ordered_fmap (map_prod id pterm_to_sterm |`| cs))"
lemma pterm_to_sterm:
assumes "no_abs t"
shows "pterm_to_sterm t = convert_term t"
using assms proof induction
case (free name)
show ?case
apply simp
apply (simp add: free_sterm_def free_pterm_def)
done
next
case (const name)
show ?case
apply simp
apply (simp add: const_sterm_def const_pterm_def)
done
next
case (app t⇩1 t⇩2)
then show ?case
apply simp
apply (simp add: app_sterm_def app_pterm_def)
done
qed
text ‹
@{const sterm_to_pterm} has to be defined, for technical reasons, in
@{theory CakeML_Codegen.Pterm}.
›
lemma pterm_to_sterm_wellformed:
assumes "wellformed t"
shows "wellformed (pterm_to_sterm t)"
using assms proof (induction t rule: pterm_induct)
case (Pabs cs)
show ?case
apply simp
unfolding map_prod_def id_apply
apply (intro conjI)
subgoal
apply (subst list_all_iff_fset)
apply (subst ordered_fmap_set_eq)
apply (rule is_fmap_image)
using Pabs apply simp
apply (rule fBallI)
apply (erule fimageE)
apply auto[]
using Pabs(2) apply auto[]
apply (rule Pabs)
using Pabs(2) by auto
subgoal
apply (rule ordered_fmap_distinct)
apply (rule is_fmap_image)
using Pabs(2) by simp
subgoal
apply (subgoal_tac "cs ≠ {||}")
including fset.lifting apply transfer
unfolding ordered_map_def
using Pabs(2) by auto
done
qed auto
lemma pterm_to_sterm_sterm_to_pterm:
assumes "wellformed t"
shows "sterm_to_pterm (pterm_to_sterm t) = t"
using assms proof (induction t)
case (Pabs cs)
note fset_of_list_map[simp del]
show ?case
apply simp
unfolding map_prod_def id_apply
apply (subst ordered_fmap_image)
subgoal
apply (rule is_fmap_image)
using Pabs by simp
apply (subst ordered_fmap_set_eq)
subgoal
apply (rule is_fmap_image)
apply (rule is_fmap_image)
using Pabs by simp
subgoal
apply (subst fset.map_comp)
apply (subst map_prod_def[symmetric])+
unfolding o_def
apply (subst prod.map_comp)
apply (subst id_def[symmetric])+
apply simp
apply (subst map_prod_def)
unfolding id_def
apply (rule fset_map_snd_id)
apply simp
apply (rule Pabs)
using Pabs(2) by (auto simp: snds.simps)
done
qed auto
corollary pterm_to_sterm_frees: "wellformed t ⟹ frees (pterm_to_sterm t) = frees t"
by (metis pterm_to_sterm_sterm_to_pterm sterm_to_pterm_frees)
corollary pterm_to_sterm_closed:
"closed_except t S ⟹ wellformed t ⟹ closed_except (pterm_to_sterm t) S"
unfolding closed_except_def
by (simp add: pterm_to_sterm_frees)
corollary pterm_to_sterm_consts: "wellformed t ⟹ consts (pterm_to_sterm t) = consts t"
by (metis pterm_to_sterm_sterm_to_pterm sterm_to_pterm_consts)
corollary (in constants) pterm_to_sterm_shadows:
"wellformed t ⟹ shadows_consts t ⟷ shadows_consts (pterm_to_sterm t)"
unfolding shadows_consts_def
by (metis pterm_to_sterm_sterm_to_pterm sterm_to_pterm_all_frees)
definition compile :: "prule fset ⇒ srule list" where
"compile rs = ordered_fmap (map_prod id pterm_to_sterm |`| rs)"
subsubsection ‹Correctness of translation›
context prules begin
lemma compile_heads: "fst |`| fset_of_list (compile rs) = fst |`| rs"
unfolding compile_def
apply (subst ordered_fmap_set_eq)
apply (subst map_prod_def, subst id_apply)
apply (rule is_fmap_image)
apply (rule fmap)
apply simp
done
lemma compile_rules: "srules C_info (compile rs)"
proof
show "list_all srule (compile rs)"
using fmap all_rules
unfolding compile_def list_all_iff
including fset.lifting
apply transfer
apply (subst ordered_map_set_eq)
subgoal by simp
subgoal
unfolding map_prod_def id_def
by (erule is_map_image)
subgoal
apply (rule ballI)
apply safe
subgoal
apply (rule pterm_to_sterm_wellformed)
apply fastforce
done
subgoal
apply (rule pterm_to_sterm_closed)
apply fastforce
apply fastforce
done
subgoal for _ _ a b
apply (erule ballE[where x = "(a, b)"])
apply (cases b; auto)
apply (auto simp: is_abs_def term_cases_def)
done
done
done
next
show "distinct (map fst (compile rs))"
unfolding compile_def
apply (rule ordered_fmap_distinct)
unfolding map_prod_def id_def
apply (rule is_fmap_image)
apply (rule fmap)
done
next
have "list_all (λ(_, rhs). welldefined rhs) (compile rs)"
unfolding compile_def
apply (subst ordered_fmap_list_all)
subgoal
apply (subst map_prod_def)
apply (subst id_apply)
apply (rule is_fmap_image)
by (fact fmap)
apply simp
apply (rule fBallI)
subgoal for x
apply (cases x, simp)
apply (subst pterm_to_sterm_consts)
using all_rules apply force
using welldefined_rs by force
done
thus "list_all (λ(_, rhs). consts rhs |⊆| pre_constants.all_consts C_info (fst |`| fset_of_list (compile rs))) (compile rs)"
by (simp add: compile_heads)
next
interpret c: constants _ "fset_of_list (map fst (compile rs))"
by (simp add: constants_axioms compile_heads)
have all_consts: "c.all_consts = all_consts"
by (simp add: compile_heads)
note fset_of_list_map[simp del]
have "list_all (λ(_, rhs). ¬ shadows_consts rhs) (compile rs)"
unfolding compile_def
apply (subst list_all_iff_fset)
apply (subst ordered_fmap_set_eq)
apply (subst map_prod_def)
unfolding id_apply
apply (rule is_fmap_image)
apply (fact fmap)
apply simp
apply (rule fBall_pred_weaken[where P = "λ(_, rhs). ¬ shadows_consts rhs"])
subgoal for x
apply (cases x, simp)
apply (subst (asm) pterm_to_sterm_shadows)
using all_rules apply force
by simp
subgoal
using not_shadows by force
done
thus "list_all (λ(_, rhs). ¬ pre_constants.shadows_consts C_info (fst |`| fset_of_list (compile rs)) rhs) (compile rs)"
unfolding compile_heads all_consts .
next
show "fdisjnt (fst |`| fset_of_list (compile rs)) C"
unfolding compile_def
apply (subst fset_of_list_map[symmetric])
apply (subst ordered_fmap_keys)
apply (subst map_prod_def)
apply (subst id_apply)
apply (rule is_fmap_image)
using fmap disjnt by auto
next
show "distinct all_constructors"
by (fact distinct_ctr)
qed
sublocale prules_as_srules: srules C_info "compile rs"
by (fact compile_rules)
end
global_interpretation srelated: term_struct_rel_strong "(λp s. p = sterm_to_pterm s)"
proof (standard, goal_cases)
case (5 name t)
then show ?case by (cases t) (auto simp: const_sterm_def const_pterm_def split: option.splits)
next
case (6 u⇩1 u⇩2 t)
then show ?case by (cases t) (auto simp: app_sterm_def app_pterm_def split: option.splits)
qed (auto simp: const_sterm_def const_pterm_def app_sterm_def app_pterm_def)
lemma srelated_subst:
assumes "srelated.P_env penv senv"
shows "subst (sterm_to_pterm t) penv = sterm_to_pterm (subst t senv)"
using assms
proof (induction t arbitrary: penv senv)
case (Svar name)
thus ?case
by (cases rule: fmrel_cases[where x = name]) auto
next
case (Sabs cs)
show ?case
apply simp
including fset.lifting
apply (transfer' fixing: cs penv senv)
unfolding set_map image_comp
apply (rule image_cong[OF refl])
unfolding comp_apply
apply (case_tac x)
apply hypsubst_thin
apply simp
apply (rule Sabs)
apply assumption
apply (simp add: snds.simps)
apply rule
apply (rule Sabs)
done
qed auto
context begin
private lemma srewrite_step_non_empty: "srewrite_step rs' name rhs ⟹ rs' ≠ []"
by (induct rule: srewrite_step.induct) auto
private lemma compile_consE:
assumes "(name, rhs') # rest = compile rs" "is_fmap rs"
obtains rhs where "rhs' = pterm_to_sterm rhs" "(name, rhs) |∈| rs" "rest = compile (rs - {| (name, rhs) |})"
proof -
from assms have "ordered_fmap (map_prod id pterm_to_sterm |`| rs) = (name, rhs') # rest"
unfolding compile_def
by simp
hence "(name, rhs') ∈ set (ordered_fmap (map_prod id pterm_to_sterm |`| rs))"
by simp
have "(name, rhs') |∈| map_prod id pterm_to_sterm |`| rs"
apply (rule ordered_fmap_sound)
subgoal
unfolding map_prod_def id_apply
apply (rule is_fmap_image)
apply fact
done
subgoal by fact
done
then obtain rhs where "rhs' = pterm_to_sterm rhs" "(name, rhs) |∈| rs"
by auto
have "rest = compile (rs - {| (name, rhs) |})"
unfolding compile_def
apply (subst inj_on_fimage_set_diff[where C = rs])
subgoal
apply (rule inj_onI)
apply safe
apply auto
using ‹is_fmap rs› by (blast dest: is_fmapD)
subgoal by simp
subgoal using ‹(name, rhs) |∈| rs› by simp
subgoal
apply simp
apply (subst ordered_fmap_remove)
apply (subst map_prod_def)
unfolding id_apply
apply (rule is_fmap_image)
apply fact
using ‹(name, rhs) |∈| rs› apply force
apply (subst ‹rhs' = pterm_to_sterm rhs›[symmetric])
apply (subst ‹ordered_fmap _ = _›[unfolded id_def])
by simp
done
show thesis
by (rule that) fact+
qed
private lemma compile_correct_step:
assumes "srewrite_step (compile rs) name rhs" "is_fmap rs" "fBall rs prule"
shows "(name, sterm_to_pterm rhs) |∈| rs"
using assms proof (induction "compile rs" name rhs arbitrary: rs)
case (cons_match name rhs' rest)
then obtain rhs where "rhs' = pterm_to_sterm rhs" "(name, rhs) |∈| rs"
by (auto elim: compile_consE)
show ?case
unfolding ‹rhs' = _›
apply (subst pterm_to_sterm_sterm_to_pterm)
using fbspec[OF ‹fBall rs prule› ‹(name, rhs) |∈| rs›] apply force
by fact
next
case (cons_nomatch name name⇩1 rest rhs rhs⇩1')
then obtain rhs⇩1 where "rhs⇩1' = pterm_to_sterm rhs⇩1" "(name⇩1, rhs⇩1) |∈| rs" "rest = compile (rs - {| (name⇩1, rhs⇩1) |})"
by (auto elim: compile_consE)
let ?rs' = "rs - {| (name⇩1, rhs⇩1) |}"
have "(name, sterm_to_pterm rhs) |∈| ?rs'"
proof (intro cons_nomatch)
show "rest = compile ?rs'"
by fact
show "is_fmap (rs |-| {|(name⇩1, rhs⇩1)|})"
using ‹is_fmap rs›
by (rule is_fmap_subset) auto
show "fBall ?rs' prule"
using cons_nomatch by blast
qed
thus ?case
by simp
qed
lemma compile_correct0:
assumes "compile rs ⊢⇩s u ⟶ u'" "prules C rs"
shows "rs ⊢⇩p sterm_to_pterm u ⟶ sterm_to_pterm u'"
using assms proof induction
case (beta cs t t')
then obtain pat rhs env where "(pat, rhs) ∈ set cs" "match pat t = Some env" "t' = subst rhs env"
by (auto elim: rewrite_firstE)
then obtain env' where "match pat (sterm_to_pterm t) = Some env'" "srelated.P_env env' env"
by (metis option.distinct(1) option.inject option.rel_cases srelated.match_rel)
hence "subst (sterm_to_pterm rhs) env' = sterm_to_pterm (subst rhs env)"
by (simp add: srelated_subst)
let ?rhs' = "sterm_to_pterm rhs"
have "(pat, ?rhs') |∈| fset_of_list (map (map_prod id sterm_to_pterm) cs)"
using ‹(pat, rhs) ∈ set cs›
including fset.lifting
by transfer' force
note fset_of_list_map[simp del]
show ?case
apply simp
apply (rule prewrite.intros)
apply fact
unfolding rewrite_step.simps
apply (subst map_option_eq_Some)
apply (intro exI conjI)
apply fact
unfolding ‹t' = _›
by fact
next
case (step name rhs)
hence "(name, sterm_to_pterm rhs) |∈| rs"
unfolding prules_def prules_axioms_def
by (metis compile_correct_step)
thus ?case
by (auto intro: prewrite.intros)
qed (auto intro: prewrite.intros)
end
lemma (in prules) compile_correct:
assumes "compile rs ⊢⇩s u ⟶ u'"
shows "rs ⊢⇩p sterm_to_pterm u ⟶ sterm_to_pterm u'"
by (rule compile_correct0) (fact | standard)+
hide_fact compile_correct0
subsubsection ‹Completeness of translation›
global_interpretation srelated': term_struct_rel_strong "(λp s. pterm_to_sterm p = s)"
proof (standard, goal_cases)
case (1 t name)
then show ?case by (cases t) (auto simp: const_sterm_def const_pterm_def split: option.splits)
next
case (3 t u⇩1 u⇩2)
then show ?case by (cases t) (auto simp: app_sterm_def app_pterm_def split: option.splits)
qed (auto simp: const_sterm_def const_pterm_def app_sterm_def app_pterm_def)
corollary srelated_env_unique:
"srelated'.P_env penv senv ⟹ srelated'.P_env penv senv' ⟹ senv = senv'"
apply (subst (asm) fmrel_iff)+
apply (subst (asm) option.rel_sel)+
apply (rule fmap_ext)
by (metis option.exhaust_sel)
lemma srelated_subst':
assumes "srelated'.P_env penv senv" "wellformed t"
shows "pterm_to_sterm (subst t penv) = subst (pterm_to_sterm t) senv"
using assms proof (induction t arbitrary: penv senv)
case (Pvar name)
thus ?case
by (cases rule: fmrel_cases[where x = name]) auto
next
case (Pabs cs)
hence "is_fmap cs"
by force
show ?case
apply simp
unfolding map_prod_def id_apply
apply (subst ordered_fmap_image[symmetric])
apply fact
apply (subst fset.map_comp[symmetric])
apply (subst ordered_fmap_image[symmetric])
subgoal by (rule is_fmap_image) fact
apply (subst ordered_fmap_image[symmetric])
apply fact
apply auto
apply (drule ordered_fmap_sound[OF ‹is_fmap cs›])
subgoal for pat rhs
apply (rule Pabs)
apply assumption
apply auto
using Pabs by force+
done
qed auto
lemma srelated_find_match:
assumes "find_match cs t = Some (penv, pat, rhs)" "srelated'.P_env penv senv"
shows "find_match (map (map_prod id pterm_to_sterm) cs) (pterm_to_sterm t) = Some (senv, pat, pterm_to_sterm rhs)"
proof -
let ?cs' = "map (map_prod id pterm_to_sterm) cs"
let ?t' = "pterm_to_sterm t"
have *: "list_all2 (rel_prod (=) (λp s. pterm_to_sterm p = s)) cs ?cs'"
unfolding list.rel_map
by (auto intro: list.rel_refl)
obtain senv0
where "find_match ?cs' ?t' = Some (senv0, pat, pterm_to_sterm rhs)" "srelated'.P_env penv senv0"
using srelated'.find_match_rel[OF * refl, where t = t, unfolded assms]
unfolding option_rel_Some1 rel_prod_conv
by auto
with assms have "senv = senv0"
by (metis srelated_env_unique)
show ?thesis
unfolding ‹senv = _› by fact
qed
lemma (in prules) compile_complete:
assumes "rs ⊢⇩p t ⟶ t'" "wellformed t"
shows "compile rs ⊢⇩s pterm_to_sterm t ⟶ pterm_to_sterm t'"
using assms proof induction
case (step name rhs)
then show ?case
apply simp
apply rule
apply (rule prules_as_srules.srewrite_stepI)
unfolding compile_def
apply (subst fset_of_list_elem[symmetric])
apply (subst ordered_fmap_set_eq)
apply (insert fmap)
apply (rule is_fmapI)
apply (force dest: is_fmapD)
by (metis fimage_eqI id_def map_prod_simp)
next
case (beta c cs t t')
from beta obtain pat rhs penv where "c = (pat, rhs)" "match pat t = Some penv" "subst rhs penv = t'"
by (metis (no_types, lifting) map_option_eq_Some rewrite_step.simps surj_pair)
then obtain senv where "match pat (pterm_to_sterm t) = Some senv" "srelated'.P_env penv senv"
by (metis option_rel_Some1 srelated'.match_rel)
have "wellformed rhs"
using beta ‹c = _› prules.all_rules prule.simps
by force
then have "subst (pterm_to_sterm rhs) senv = pterm_to_sterm t'"
using srelated_subst' ‹_ = t'› ‹srelated'.P_env _ _›
by metis
have "(pat, pterm_to_sterm rhs) |∈| map_prod id pterm_to_sterm |`| cs"
using beta ‹c = _›
by (metis fimage_eqI id_def map_prod_simp)
have "is_fmap cs"
using beta
by auto
have "find_match (ordered_fmap cs) t = Some (penv, pat, rhs)"
apply (rule compatible_find_match)
subgoal
apply (subst ordered_fmap_set_eq[OF ‹is_fmap cs›])+
using beta by simp
subgoal
unfolding list_all_iff
apply rule
apply (rename_tac x, case_tac x)
apply simp
apply (drule ordered_fmap_sound[OF ‹is_fmap cs›])
using beta by auto
subgoal
apply (subst ordered_fmap_set_eq)
by fact
subgoal
by fact
subgoal
using beta(1) ‹c = _› ‹is_fmap cs›
using fset_of_list_elem ordered_fmap_set_eq by fast
done
show ?case
apply simp
apply rule
apply (subst ‹_ = pterm_to_sterm t'›[symmetric])
apply (rule find_match_rewrite_first)
unfolding map_prod_def id_apply
apply (subst ordered_fmap_image[symmetric])
apply fact
apply (subst map_prod_def[symmetric])
apply (subst id_def[symmetric])
apply (rule srelated_find_match)
by fact+
qed (auto intro: srewrite.intros)
subsubsection ‹Computability›
export_code compile
checking Scala
end