Theory CZH_SMC_Small_NTSMCF
section‹Smallness for natural transformations of semifunctors›
theory CZH_SMC_Small_NTSMCF
imports
CZH_DG_Small_TDGHM
CZH_SMC_Small_Semifunctor
CZH_SMC_NTSMCF
begin
subsection‹Natural transformation of semifunctors with tiny maps›
subsubsection‹Definition and elementary properties›
locale is_tm_ntsmcf = is_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 for α 𝔄 𝔅 𝔉 𝔊 𝔑 +
assumes tm_ntsmcf_is_tm_tdghm[slicing_intros]: "ntsmcf_tdghm 𝔑 :
smcf_dghm 𝔉 ↦⇩D⇩G⇩H⇩M⇩.⇩t⇩m smcf_dghm 𝔊 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩m⇘α⇙ smc_dg 𝔅"
syntax "_is_tm_ntsmcf" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m _ :/ _ ↦↦⇩S⇩M⇩C⇩.⇩t⇩mı _)› [51, 51, 51, 51, 51] 51)
translations "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅" ⇌
"CONST is_tm_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑"
abbreviation all_tm_ntsmcfs :: "V ⇒ V"
where "all_tm_ntsmcfs α ≡
set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
abbreviation tm_ntsmcfs :: "V ⇒ V ⇒ V ⇒ V"
where "tm_ntsmcfs α 𝔄 𝔅 ≡
set {𝔑. ∃𝔉 𝔊. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
abbreviation these_tm_ntsmcfs :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V"
where "these_tm_ntsmcfs α 𝔄 𝔅 𝔉 𝔊 ≡
set {𝔑. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
lemma (in is_tm_ntsmcf) tm_ntsmcf_is_tm_tdghm':
assumes "α' = α"
and "𝔉' = smcf_dghm 𝔉"
and "𝔊' = smcf_dghm 𝔊"
and "𝔄' = smc_dg 𝔄"
and "𝔅' = smc_dg 𝔅"
shows "ntsmcf_tdghm 𝔑 :
𝔉' ↦⇩D⇩G⇩H⇩M⇩.⇩t⇩m 𝔊' : 𝔄' ↦↦⇩D⇩G⇩.⇩t⇩m⇘α'⇙ 𝔅'"
unfolding assms by (rule tm_ntsmcf_is_tm_tdghm)
lemmas [slicing_intros] = is_tm_ntsmcf.tm_ntsmcf_is_tm_tdghm'
text‹Rules.›
lemma (in is_tm_ntsmcf) is_tm_ntsmcf_axioms'[smc_small_cs_intros]:
assumes "α' = α" and "𝔄' = 𝔄" and "𝔅' = 𝔅" and "𝔉' = 𝔉" and "𝔊' = 𝔊"
shows "𝔑 : 𝔉' ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊' : 𝔄' ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅'"
unfolding assms by (rule is_tm_ntsmcf_axioms)
mk_ide rf is_tm_ntsmcf_def[unfolded is_tm_ntsmcf_axioms_def]
|intro is_tm_ntsmcfI|
|dest is_tm_ntsmcfD[dest]|
|elim is_tm_ntsmcfE[elim]|
lemmas [smc_small_cs_intros] = is_tm_ntsmcfD(1)
text‹Slicing.›
context is_tm_ntsmcf
begin
interpretation tdghm: is_tm_tdghm
α ‹smc_dg 𝔄› ‹smc_dg 𝔅› ‹smcf_dghm 𝔉› ‹smcf_dghm 𝔊› ‹ntsmcf_tdghm 𝔑›
by (rule tm_ntsmcf_is_tm_tdghm)
lemmas_with [unfolded slicing_simps]:
tm_ntsmcf_NTMap_in_Vset = tdghm.tm_tdghm_NTMap_in_Vset
end
text‹Elementary properties.›
sublocale is_tm_ntsmcf ⊆ NTDom: is_tm_semifunctor α 𝔄 𝔅 𝔉
using tm_ntsmcf_is_tm_tdghm
by (intro is_tm_semifunctorI) (auto simp: smc_cs_intros)
sublocale is_tm_ntsmcf ⊆ NTCod: is_tm_semifunctor α 𝔄 𝔅 𝔊
using tm_ntsmcf_is_tm_tdghm
by (intro is_tm_semifunctorI) (auto simp: smc_cs_intros)
text‹Further rules.›
lemma is_tm_ntsmcfI':
assumes "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
and "𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
shows "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
proof-
interpret is_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 by (rule assms(1))
interpret 𝔉: is_tm_semifunctor α 𝔄 𝔅 𝔉 by (rule assms(2))
interpret 𝔊: is_tm_semifunctor α 𝔄 𝔅 𝔊 by (rule assms(3))
show ?thesis
proof(intro is_tm_ntsmcfI)
show "ntsmcf_tdghm 𝔑 :
smcf_dghm 𝔉 ↦⇩D⇩G⇩H⇩M⇩.⇩t⇩m smcf_dghm 𝔊 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩m⇘α⇙ smc_dg 𝔅"
by (intro is_tm_tdghmI) (auto simp: slicing_intros)
qed (auto simp: assms(2,3) vfsequence_axioms smc_cs_intros)
qed
lemma is_tm_ntsmcfD':
assumes "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
shows "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
and "𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
proof-
interpret is_tm_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 by (rule assms(1))
show "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
and "𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
by (auto simp: smc_small_cs_intros)
qed
lemmas [smc_small_cs_intros] = is_tm_ntsmcfD'(2,3)
text‹Size.›
lemma small_all_tm_ntsmcfs[simp]:
"small {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
proof(rule down)
show "{𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅} ⊆
elts (set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅})"
proof
(
simp only: elts_of_set small_all_ntsmcfs if_True,
rule subsetI,
unfold mem_Collect_eq
)
fix 𝔑 assume "∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
then obtain 𝔉 𝔊 𝔄 𝔅 where "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
by clarsimp
then interpret is_tm_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 .
have "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅" by (auto simp: smc_cs_intros)
then show "∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅" by auto
qed
qed
lemma small_tm_ntsmcfs[simp]:
"small {𝔑. ∃𝔉 𝔊. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
by
(
rule
down[
of _ ‹set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}›
]
)
auto
lemma small_these_tm_ntsmcfs[simp]:
"small {𝔑. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
by
(
rule
down[
of _ ‹set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}›
]
)
auto
text‹Further elementary results.›
lemma these_tm_ntsmcfs_iff:
"𝔑 ∈⇩∘ these_tm_ntsmcfs α 𝔄 𝔅 𝔉 𝔊 ⟷
𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
by auto
subsubsection‹
Opposite natural transformation of semifunctors with tiny maps
›
lemma (in is_tm_ntsmcf) is_tm_ntsmcf_op: "op_ntsmcf 𝔑 :
op_smcf 𝔊 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m op_smcf 𝔉 : op_smc 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ op_smc 𝔅"
by (intro is_tm_ntsmcfI')
(cs_concl cs_shallow cs_intro: smc_cs_intros smc_op_intros)+
lemma (in is_tm_ntsmcf) is_tm_ntsmcf_op'[smc_op_intros]:
assumes "𝔊' = op_smcf 𝔊"
and "𝔉' = op_smcf 𝔉"
and "𝔄' = op_smc 𝔄"
and "𝔅' = op_smc 𝔅"
shows "op_ntsmcf 𝔑 : 𝔊' ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔉' : 𝔄' ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅'"
unfolding assms by (rule is_tm_ntsmcf_op)
lemmas is_tm_ntsmcf_op[smc_op_intros] = is_tm_ntsmcf.is_tm_ntsmcf_op'
subsubsection‹
Vertical composition of natural transformations of
semifunctors with tiny maps
›
lemma ntsmcf_vcomp_is_tm_ntsmcf[smc_small_cs_intros]:
assumes "𝔐 : 𝔊 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m ℌ : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
and "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
shows "𝔐 ∙⇩N⇩T⇩S⇩M⇩C⇩F 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m ℌ : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
proof-
interpret 𝔐: is_tm_ntsmcf α 𝔄 𝔅 𝔊 ℌ 𝔐 by (rule assms(1))
interpret 𝔑: is_tm_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 by (rule assms(2))
show ?thesis
by (rule is_tm_ntsmcfI') (auto intro: smc_cs_intros smc_small_cs_intros)
qed
subsubsection‹
Composition of a natural transformation of semifunctors and a semifunctor
›
lemma ntsmcf_smcf_comp_is_tm_ntsmcf:
assumes "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔅 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ" and "ℌ : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
shows "𝔑 ∘⇩N⇩T⇩S⇩M⇩C⇩F⇩-⇩S⇩M⇩C⇩F ℌ : 𝔉 ∘⇩S⇩M⇩C⇩F ℌ ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 ∘⇩S⇩M⇩C⇩F ℌ : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ"
proof-
interpret 𝔑: is_tm_ntsmcf α 𝔅 ℭ 𝔉 𝔊 𝔑 by (rule assms(1))
interpret ℌ: is_tm_semifunctor α 𝔄 𝔅 ℌ by (rule assms(2))
from assms show ?thesis
by (intro is_tm_ntsmcfI)
(
cs_concl
cs_simp: slicing_commute[symmetric]
cs_intro: smc_cs_intros dg_small_cs_intros slicing_intros
)+
qed
lemma ntsmcf_smcf_comp_is_tm_ntsmcf'[smc_small_cs_intros]:
assumes "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔅 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ"
and "ℌ : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
and "𝔉' = 𝔉 ∘⇩S⇩M⇩C⇩F ℌ"
and "𝔊' = 𝔊 ∘⇩S⇩M⇩C⇩F ℌ"
shows "𝔑 ∘⇩N⇩T⇩S⇩M⇩C⇩F⇩-⇩S⇩M⇩C⇩F ℌ : 𝔉' ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊' : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ"
using assms(1,2) unfolding assms(3,4) by (rule ntsmcf_smcf_comp_is_tm_ntsmcf)
subsubsection‹
Composition of a semifunctor and a natural transformation of semifunctors
›
lemma smcf_ntsmcf_comp_is_tm_ntsmcf:
assumes "ℌ : 𝔅 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ" and "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
shows "ℌ ∘⇩S⇩M⇩C⇩F⇩-⇩N⇩T⇩S⇩M⇩C⇩F 𝔑 : ℌ ∘⇩S⇩M⇩C⇩F 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m ℌ ∘⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ"
proof-
interpret ℌ: is_tm_semifunctor α 𝔅 ℭ ℌ by (rule assms(1))
interpret 𝔑: is_tm_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 by (rule assms(2))
from assms show ?thesis
by (intro is_tm_ntsmcfI)
(
cs_concl
cs_simp: slicing_commute[symmetric]
cs_intro: smc_cs_intros dg_small_cs_intros slicing_intros
)+
qed
lemma smcf_ntsmcf_comp_is_tm_ntsmcf'[smc_small_cs_intros]:
assumes "ℌ : 𝔅 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ"
and "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
and "𝔉' = ℌ ∘⇩S⇩M⇩C⇩F 𝔉"
and "𝔊' = ℌ ∘⇩S⇩M⇩C⇩F 𝔊"
shows "ℌ ∘⇩S⇩M⇩C⇩F⇩-⇩N⇩T⇩S⇩M⇩C⇩F 𝔑 : 𝔉' ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩m 𝔊' : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ"
using assms(1,2) unfolding assms(3,4) by (rule smcf_ntsmcf_comp_is_tm_ntsmcf)
subsection‹Tiny natural transformation of semifunctors›
subsubsection‹Definition and elementary properties›
locale is_tiny_ntsmcf = is_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 for α 𝔄 𝔅 𝔉 𝔊 𝔑 +
assumes tiny_ntsmcf_is_tdghm[slicing_intros]: "ntsmcf_tdghm 𝔑 :
smcf_dghm 𝔉 ↦⇩D⇩G⇩H⇩M⇩.⇩t⇩i⇩n⇩y smcf_dghm 𝔊 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩i⇩n⇩y⇘α⇙ smc_dg 𝔅"
syntax "_is_tiny_ntsmcf" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y _ :/ _ ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩yı _)› [51, 51, 51, 51, 51] 51)
translations "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅" ⇌
"CONST is_tiny_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑"
abbreviation all_tiny_ntsmcfs :: "V ⇒ V"
where "all_tiny_ntsmcfs α ≡
set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
abbreviation tiny_ntsmcfs :: "V ⇒ V ⇒ V ⇒ V"
where "tiny_ntsmcfs α 𝔄 𝔅 ≡
set {𝔑. ∃𝔉 𝔊. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
abbreviation these_tiny_ntsmcfs :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V"
where "these_tiny_ntsmcfs α 𝔄 𝔅 𝔉 𝔊 ≡
set {𝔑. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
lemma (in is_tiny_ntsmcf) tiny_ntsmcf_is_tdghm':
assumes "α' = α"
and "𝔉' = smcf_dghm 𝔉"
and "𝔊' = smcf_dghm 𝔊"
and "𝔄' = smc_dg 𝔄"
and "𝔅' = smc_dg 𝔅"
shows "ntsmcf_tdghm 𝔑 : 𝔉' ↦⇩D⇩G⇩H⇩M⇩.⇩t⇩i⇩n⇩y 𝔊' : 𝔄' ↦↦⇩D⇩G⇩.⇩t⇩i⇩n⇩y⇘α'⇙ 𝔅'"
unfolding assms by (rule tiny_ntsmcf_is_tdghm)
lemmas [slicing_intros] = is_tiny_ntsmcf.tiny_ntsmcf_is_tdghm'
text‹Rules.›
lemma (in is_tiny_ntsmcf) is_tiny_ntsmcf_axioms'[smc_small_cs_intros]:
assumes "α' = α" and "𝔄' = 𝔄" and "𝔅' = 𝔅" and "𝔉' = 𝔉" and "𝔊' = 𝔊"
shows "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
unfolding assms by (rule is_tiny_ntsmcf_axioms)
mk_ide rf is_tiny_ntsmcf_def[unfolded is_tiny_ntsmcf_axioms_def]
|intro is_tiny_ntsmcfI|
|dest is_tiny_ntsmcfD[dest]|
|elim is_tiny_ntsmcfE[elim]|
text‹Elementary properties.›
sublocale is_tiny_ntsmcf ⊆ NTDom: is_tiny_semifunctor α 𝔄 𝔅 𝔉
using tiny_ntsmcf_is_tdghm
by (intro is_tiny_semifunctorI) (auto simp: smc_cs_intros)
sublocale is_tiny_ntsmcf ⊆ NTCod: is_tiny_semifunctor α 𝔄 𝔅 𝔊
using tiny_ntsmcf_is_tdghm
by (intro is_tiny_semifunctorI) (auto simp: smc_cs_intros)
sublocale is_tiny_ntsmcf ⊆ is_tm_ntsmcf
by (rule is_tm_ntsmcfI')
(auto simp: tiny_ntsmcf_is_tdghm smc_small_cs_intros smc_cs_intros)
text‹Further rules.›
lemma is_tiny_ntsmcfI':
assumes "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
and "𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
shows "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
using assms by (auto intro: is_tiny_ntsmcfI)
lemma is_tiny_ntsmcfD':
assumes "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
shows "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
and "𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
proof-
interpret is_tiny_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 by (rule assms(1))
show "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
and "𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
by
(
auto
simp: is_ntsmcf_axioms
intro:
NTDom.is_tiny_semifunctor_axioms
NTCod.is_tiny_semifunctor_axioms
)
qed
lemmas [smc_small_cs_intros] = is_tiny_ntsmcfD'(2,3)
lemma is_tiny_ntsmcfE':
assumes "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
obtains "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
and "𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
using assms by (auto dest: is_tiny_ntsmcfD'(2,3))
lemma is_tiny_ntsmcf_iff:
"𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅 ⟷
(
𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅 ∧
𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅 ∧
𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅
)"
using is_tiny_ntsmcfI' is_tiny_ntsmcfD' by (intro iffI) auto
text‹Size.›
lemma (in is_tiny_ntsmcf) tiny_ntsmcf_in_Vset: "𝔑 ∈⇩∘ Vset α"
proof-
note [smc_cs_intros] =
tm_ntsmcf_NTMap_in_Vset
NTDom.tiny_smcf_in_Vset
NTCod.tiny_smcf_in_Vset
NTDom.HomDom.tiny_smc_in_Vset
NTDom.HomCod.tiny_smc_in_Vset
show ?thesis
by (subst ntsmcf_def)
(
cs_concl cs_shallow
cs_simp: smc_cs_simps cs_intro: smc_cs_intros V_cs_intros
)
qed
lemma small_all_tiny_ntsmcfs[simp]:
"small {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
proof(rule down)
show "{𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅} ⊆
elts (set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅})"
proof
(
simp only: elts_of_set small_all_ntsmcfs if_True,
rule subsetI,
unfold mem_Collect_eq
)
fix 𝔑 assume "∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
then obtain 𝔉 𝔊 𝔄 𝔅 where "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
by clarsimp
then interpret is_tiny_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 .
have "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
by (auto intro: smc_cs_intros)
then show "∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅" by auto
qed
qed
lemma small_tiny_ntsmcfs[simp]:
"small {𝔑. ∃𝔉 𝔊. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
by
(
rule
down[
of
_
‹set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}›
]
)
auto
lemma small_these_tiny_ntcfs[simp]:
"small {𝔑. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
by
(
rule down[
of _ ‹set {𝔑. ∃𝔉 𝔊 𝔄 𝔅. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}›
]
)
auto
lemma tiny_ntsmcfs_vsubset_Vset[simp]:
"set {𝔑. ∃𝔉 𝔊. 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅} ⊆⇩∘ Vset α"
(is ‹set ?ntsmcfs ⊆⇩∘ _›)
proof(cases ‹tiny_semicategory α 𝔄 ∧ tiny_semicategory α 𝔅›)
case True
then have "tiny_semicategory α 𝔄" and "tiny_semicategory α 𝔅" by auto
show ?thesis
proof(rule vsubsetI)
fix 𝔑 assume "𝔑 ∈⇩∘ set ?ntsmcfs"
then obtain 𝔉 𝔊 where "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅" by auto
then interpret is_tiny_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 .
from tiny_ntsmcf_in_Vset show "𝔑 ∈⇩∘ Vset α" by simp
qed
next
case False
then have "set ?ntsmcfs = 0"
unfolding is_tiny_ntsmcf_iff is_tiny_semifunctor_iff by auto
then show ?thesis by simp
qed
lemma (in is_ntsmcf) ntsmcf_is_tiny_ntsmcf_if_ge_Limit:
assumes "𝒵 β" and "α ∈⇩∘ β"
shows "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘β⇙ 𝔅"
proof(intro is_tiny_ntsmcfI)
interpret β: 𝒵 β by (rule assms(1))
show "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇘β⇙ 𝔅"
by (intro ntsmcf_is_ntsmcf_if_ge_Limit)
(use assms(2) in ‹cs_concl cs_shallow cs_intro: dg_cs_intros›)+
show "ntsmcf_tdghm 𝔑 :
smcf_dghm 𝔉 ↦⇩D⇩G⇩H⇩M⇩.⇩t⇩i⇩n⇩y smcf_dghm 𝔊 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩i⇩n⇩y⇘β⇙ smc_dg 𝔅"
by
(
rule is_tdghm.tdghm_is_tiny_tdghm_if_ge_Limit,
rule ntsmcf_is_tdghm;
intro assms
)
qed
text‹Further elementary results.›
lemma these_tiny_ntsmcfs_iff:
"𝔑 ∈⇩∘ these_tiny_ntsmcfs α 𝔄 𝔅 𝔉 𝔊 ⟷
𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
by auto
subsubsection‹Opposite natural transformation of tiny semifunctors›
lemma (in is_tiny_ntsmcf) is_tm_ntsmcf_op: "op_ntsmcf 𝔑 :
op_smcf 𝔊 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y op_smcf 𝔉 : op_smc 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ op_smc 𝔅"
by (intro is_tiny_ntsmcfI')
(cs_concl cs_shallow cs_intro: smc_cs_intros smc_op_intros)+
lemma (in is_tiny_ntsmcf) is_tiny_ntsmcf_op'[smc_op_intros]:
assumes "𝔊' = op_smcf 𝔊"
and "𝔉' = op_smcf 𝔉"
and "𝔄' = op_smc 𝔄"
and "𝔅' = op_smc 𝔅"
shows "op_ntsmcf 𝔑 : 𝔊' ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔉' : 𝔄' ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅'"
unfolding assms by (rule is_tm_ntsmcf_op)
lemmas is_tiny_ntsmcf_op[smc_op_intros] = is_tiny_ntsmcf.is_tiny_ntsmcf_op'
subsubsection‹
Vertical composition of tiny natural transformations of
semifunctors
›
lemma ntsmcf_vcomp_is_tiny_ntsmcf[smc_small_cs_intros]:
assumes "𝔐 : 𝔊 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y ℌ : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
and "𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y 𝔊 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
shows "𝔐 ∙⇩N⇩T⇩S⇩M⇩C⇩F 𝔑 : 𝔉 ↦⇩S⇩M⇩C⇩F⇩.⇩t⇩i⇩n⇩y ℌ : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
proof-
interpret 𝔐: is_tiny_ntsmcf α 𝔄 𝔅 𝔊 ℌ 𝔐 by (rule assms(1))
interpret 𝔑: is_tiny_ntsmcf α 𝔄 𝔅 𝔉 𝔊 𝔑 by (rule assms(2))
show ?thesis by (rule is_tiny_ntsmcfI') (auto intro: smc_small_cs_intros)
qed
text‹\newpage›
end