Theory SM.SM_LTL
theory SM_LTL
imports LTL.LTL SM_Semantics
begin
definition test_aprop :: "exp ⇒ valuation ⇒ bool"
where "test_aprop e s ≡ case eval_exp e (⦇ local_state.variables = Map.empty ⦈,
⦇ global_state.variables = s ⦈) of None ⇒ False | Some v ⇒ bool_of_val v"
definition sm_props :: "valuation ⇒ exp set"
where "sm_props s ≡ {e. test_aprop e s}"
definition ap_accept :: "program ⇒ (nat ⇒ exp set) ⇒ bool"
where "ap_accept prog w ≡ ∃ w'. ref_accept prog w' ∧ w = sm_props ∘ global_state.variables ∘ w'"
end