Theory SM.Gen_Scheduler
section ‹Generic Scheduler›
theory Gen_Scheduler
imports Main
CAVA_Automata.Stuttering_Extension
"../Lib/LTS" "../Lib/SOS_Misc_Add"
"HOL-Library.Multiset"
begin
lemmas [simp del] = union_mset_add_mset_left union_mset_add_mset_right
text ‹
A generic scheduler, that is parameterized with local LTS and
enabledness/effects of labels.
›
record ('c,'ls) local_config =
command :: 'c
state :: 'ls
record ('c,'ls,'gs) global_config =
processes :: "('c,'ls) local_config multiset"
state :: 'gs
locale Gen_Scheduler = cs: LTS cstep
for cstep :: "'c ⇒ 'a+'b ⇒ 'c ⇒ bool" +
fixes en :: "('ls×'gs) ⇒ 'a ⇀ bool"
fixes ex :: "('ls×'gs) ⇒ 'a ⇀ ('ls×'gs)"
begin
definition gstep_succ
:: "('c,'ls,'gs)global_config ⇒ ('c,'ls,'gs)global_config option set"
where
"gstep_succ gc ≡ do {
let lcs = global_config.processes gc;
(lc,lcs') ← {(lc,lcs'). lcs = {#lc#} + lcs'};
let gs = global_config.state gc;
let ls = local_config.state lc;
let cmd = local_config.command lc;
(a,cmd') ← {(a,cmd'). cstep cmd a cmd'};
case a of
Inl a ⇒ (
case en (ls,gs) a of
None ⇒ {None}
| Some False ⇒ {}
| Some True ⇒ {do {
(ls,gs) ← ex (ls,gs) a;
Some ⦇
global_config.processes = {#
⦇ local_config.command = cmd', local_config.state = ls⦈
#} + lcs',
global_config.state = gs
⦈
}}
)
| Inr _ ⇒ {None}
}"
definition gstep
:: "(('c, 'ls, 'gs) global_config option × ('c, 'ls, 'gs) global_config option) set"
where "gstep ≡ {(Some c, c') |c c'. c' ∈ gstep_succ c}"
text ‹For the final step function, we apply stutter extension›
definition "step ≡ stutter_extend_edges UNIV gstep"
lemma gstep_eq_pred_of_succ: "gstep = rel_of_succ (m2r_succ gstep_succ)"
unfolding gstep_def by auto
lemma gstep_eq_conv: "(c, c') ∈ gstep ⟷ (∃cc. c=Some cc ∧ c'∈gstep_succ cc)"
unfolding gstep_def by auto
lemma [simp]: "(∀x. a≠Inr x) ⟷ (∃y. a=Inl y)"
by (cases a) auto
lemma [simp]: "¬(All Not)" by blast
lemma ne_Some_b_conv:
"(a≠Some b) ⟷ (a=Some (¬b) ∨ a=None)"
by (cases a) auto
lemma gstep_succE[cases set: gstep_succ, case_names fail_cfg fail_en fail_ex succ]:
assumes "gc' ∈ gstep_succ gc"
obtains
lc lcs c' b
where
"processes gc = {#lc#} + lcs"
"cstep (command lc) (Inr b) c'"
"gc'=None"
| lc lcs c' a
where
"processes gc = {#lc#} + lcs"
"cstep (command lc) (Inl a) c'"
"en (local_config.state lc, global_config.state gc) a = None"
"gc' = None"
| lc lcs c' a
where
"processes gc = {#lc#} + lcs"
"cstep (command lc) (Inl a) c'"
"en (local_config.state lc, global_config.state gc) a = Some True"
"ex (local_config.state lc, global_config.state gc) a = None"
"gc' = None"
| lc lcs c' a ls' gs'
where
"processes gc = {#lc#} + lcs"
"cstep (command lc) (Inl a) c'"
"en (local_config.state lc, global_config.state gc) a = Some True"
"ex (local_config.state lc, global_config.state gc) a = Some (ls',gs')"
"gc' = Some ⦇
global_config.processes
= {#⦇ local_config.command = c', local_config.state = ls' ⦈#} + lcs,
global_config.state
= gs'
⦈"
using assms
unfolding gstep_succ_def
apply (auto
split: option.splits bool.splits Option.bind_splits sum.splits
simp: all_conj_distrib
elim!: neq_Some_bool_cases)
apply (case_tac aa)
apply (auto simp: ne_Some_b_conv)
done
lemma gstep_succ_fail_cmd:
assumes "processes gc = {#lc#} + lcs"
assumes "cstep (command lc) (Inr b) c'"
shows "None ∈ gstep_succ gc"
using assms unfolding gstep_succ_def
by (fastforce)
lemma gstep_succ_fail_en:
assumes "processes gc = {#lc#} + lcs"
assumes "cstep (command lc) (Inl a) c'"
assumes "en (local_config.state lc, global_config.state gc) a = None"
shows "None ∈ gstep_succ gc"
using assms unfolding gstep_succ_def
by (fastforce)
lemma gstep_succ_fail_ex:
assumes "processes gc = {#lc#} + lcs"
assumes "cstep (command lc) (Inl a) c'"
assumes "en (local_config.state lc, global_config.state gc) a = Some True"
assumes "ex (local_config.state lc, global_config.state gc) a = None"
shows "None ∈ gstep_succ gc"
using assms unfolding gstep_succ_def
by (fastforce)
lemma gstep_succ_succ:
assumes "processes gc = {#lc#} + lcs"
assumes "cstep (command lc) (Inl a) c'"
assumes "en (local_config.state lc, global_config.state gc) a = Some True"
assumes "ex (local_config.state lc, global_config.state gc) a = Some (ls',gs')"
shows "Some ⦇
global_config.processes
= {#⦇ local_config.command = c', local_config.state = ls' ⦈#} + lcs,
global_config.state
= gs'
⦈ ∈ gstep_succ gc"
using assms unfolding gstep_succ_def
by (fastforce)
end
locale Gen_Scheduler_linit =
Gen_Scheduler cstep en ex
for cstep :: "'c ⇒ 'a+'b ⇒ 'c ⇒ bool"
and en :: "('ls×'gs) ⇒ 'a ⇀ bool"
and ex :: "('ls×'gs) ⇒ 'a ⇀ ('ls×'gs)" +
fixes ginit :: "('c,'ls,'gs) global_config set"
fixes glabel :: "('c,'ls,'gs) global_config ⇒ 'l"
begin
definition init where "init ≡ Some ` ginit"
fun label where "label None = undefined" | "label (Some gc) = glabel gc"
lemma init_conv: "gco ∈ init ⟷ (∃gc. gco=Some gc ∧ gc ∈ ginit)"
unfolding init_def by auto
definition system_automaton' :: "(('c,'ls,'gs) global_config option, 'l) sa_rec"
where "system_automaton' ≡ ⦇ g_V = UNIV, g_E = gstep, g_V0 = init, sa_L = label ⦈"
lemma system_automaton'_simps[simp]:
"g_V system_automaton' = UNIV"
"g_E system_automaton' = gstep"
"g_V0 system_automaton' = init"
"sa_L system_automaton' = label"
unfolding system_automaton'_def by simp+
definition system_automaton :: "(('c,'ls,'gs) global_config option, 'l) sa_rec"
where "system_automaton ≡ ⦇ g_V = UNIV, g_E = step, g_V0 = init, sa_L = label ⦈"
lemma system_automaton_simps[simp]:
"g_V system_automaton = UNIV"
"g_E system_automaton = step"
"g_V0 system_automaton = init"
"sa_L system_automaton = label"
unfolding system_automaton_def by simp+
lemma system_automaton_alt_def: "system_automaton = stutter_extend system_automaton'"
unfolding step_def system_automaton'_def system_automaton_def stutter_extend_def by simp
sublocale sa': sa system_automaton' by unfold_locales auto
sublocale sa: sa system_automaton unfolding system_automaton_alt_def by (rule sa'.stutter_extend_sa)
end
end