Theory Algebra
section ‹Algebra›
text ‹
In this section, we develop the necessary algebra for developing the theory of Coxeter systems,
including groups, quotient groups, free groups, group presentations, and words in a group over a
set of generators.
›
theory Algebra
imports Prelim
begin
subsection ‹Miscellaneous algebra facts›
lemma times2_conv_add: "(j::nat) + j = 2*j"
by (induct j) auto
lemma (in comm_semiring_1) odd_n0: "odd m ⟹ m≠0"
using dvd_0_right by fast
lemma (in semigroup_add) add_assoc4: "a + b + c + d = a + (b + c + d)"
using add.assoc by simp
lemmas (in monoid_add) sum_list_map_cong =
arg_cong[OF map_cong, OF refl, of _ _ _ sum_list]
context group_add
begin
lemma map_uminus_order2:
"∀s∈set ss. s+s=0 ⟹ map (uminus) ss = ss"
by (induct ss) (auto simp add: minus_unique)
lemma uminus_sum_list: "- sum_list as = sum_list (map uminus (rev as))"
by (induct as) (auto simp add: minus_add)
lemma uminus_sum_list_order2:
"∀s∈set ss. s+s=0 ⟹ - sum_list ss = sum_list (rev ss)"
using uminus_sum_list map_uminus_order2 by simp
end
subsection ‹The type of permutations of a type›
text ‹
Here we construct a type consisting of all bijective functions on a type. This is the
prototypical example of a group, where the group operation is composition, and every group can
be embedded into such a type. It is for this purpose that we construct this type, so that we may
confer upon suitable subsets of types that are not of class @{class group_add} the properties of
that class, via a suitable injective correspondence to this permutation type.
›
typedef 'a permutation = "{f::'a⇒'a. bij f}"
morphisms permutation Abs_permutation
by fast
setup_lifting type_definition_permutation
abbreviation permutation_apply :: "'a permutation ⇒ 'a ⇒ 'a " (infixr "→" 90)
where "p → a ≡ permutation p a"
abbreviation permutation_image :: "'a permutation ⇒ 'a set ⇒ 'a set"
(infixr "`→" 90)
where "p `→ A ≡ permutation p ` A"
lemma permutation_eq_image: "a `→ A = a `→ B ⟹ A=B"
using permutation[of a] inj_eq_image[OF bij_is_inj] by auto
instantiation permutation :: (type) zero
begin
lift_definition zero_permutation :: "'a permutation" is "id::'a⇒'a" by simp
instance ..
end
instantiation permutation :: (type) plus
begin
lift_definition plus_permutation :: "'a permutation ⇒ 'a permutation ⇒ 'a permutation"
is "comp"
using bij_comp
by fast
instance ..
end
lemma plus_permutation_abs_eq:
"bij f ⟹ bij g ⟹
Abs_permutation f + Abs_permutation g = Abs_permutation (f∘g)"
by (simp add: plus_permutation.abs_eq eq_onp_same_args)
instance permutation :: (type) semigroup_add
proof
fix a b c :: "'a permutation" show "a + b + c = a + (b + c)"
using comp_assoc[of "permutation a" "permutation b" "permutation c"]
by transfer simp
qed
instance permutation :: (type) monoid_add
proof
fix a :: "'a permutation"
show "0 + a = a" by transfer simp
show "a + 0 = a" by transfer simp
qed
instantiation permutation :: (type) uminus
begin
lift_definition uminus_permutation :: "'a permutation ⇒ 'a permutation"
is "λf. the_inv f"
using bij_betw_the_inv_into
by fast
instance ..
end
instantiation permutation :: (type) minus
begin
lift_definition minus_permutation :: "'a permutation ⇒ 'a permutation ⇒ 'a permutation"
is "λf g. f ∘ (the_inv g)"
using bij_betw_the_inv_into bij_comp
by fast
instance ..
end
lemma minus_permutation_abs_eq:
"bij f ⟹ bij g ⟹
Abs_permutation f - Abs_permutation g = Abs_permutation (f ∘ the_inv g)"
by (simp add: minus_permutation.abs_eq eq_onp_same_args)
instance permutation :: (type) group_add
proof
fix a b :: "'a permutation"
show "- a + a = 0" using the_inv_leftinv[of "permutation a"] by transfer simp
show "a + - b = a - b" by transfer simp
qed
subsection ‹Natural action of @{typ nat} on types of class @{class monoid_add}›
subsubsection ‹Translation from class @{class power}.›
text ‹
Here we translate the @{class power} class to apply to types of class @{class monoid_add}.
›
context monoid_add
begin
sublocale nataction: power 0 plus .
sublocale add_mult_translate: monoid_mult 0 plus
by unfold_locales (auto simp add: add.assoc)
abbreviation nataction :: "'a ⇒ nat ⇒ 'a" (infix "+^" 80)
where "a+^n ≡ nataction.power a n"
lemmas nataction_2 = add_mult_translate.power2_eq_square
lemmas nataction_Suc2 = add_mult_translate.power_Suc2
lemma alternating_sum_list_conv_nataction:
"sum_list (alternating_list (2*n) s t) = (s+t)+^n"
by (induct n) (auto simp add: nataction_Suc2[THEN sym])
lemma nataction_add_flip: "(a+b)+^(Suc n) = a + (b+a)+^n + b"
using nataction_Suc2 add.assoc by (induct n arbitrary: a b) auto
end
lemma (in group_add) nataction_add_eq0_flip:
assumes "(a+b)+^n = 0"
shows "(b+a)+^n = 0"
proof (cases n)
case (Suc k) with assms show ?thesis
using nataction_add_flip add.assoc[of "-a" "a+b" "(a+b)+^k"] by simp
qed simp
subsubsection ‹Additive order of an element›
context monoid_add
begin
definition add_order :: "'a ⇒ nat"
where "add_order a ≡ if (∃n>0. a+^n = 0) then
(LEAST n. n>0 ∧ a+^n = 0) else 0"
lemma add_order: "a+^(add_order a) = 0"
using LeastI_ex[of "λn. n>0 ∧ a+^n = 0"] add_order_def by simp
lemma add_order_least: "n>0 ⟹ a+^n = 0 ⟹ add_order a ≤ n"
using Least_le[of "λn. n>0 ∧ a+^n = 0"] add_order_def by simp
lemma add_order_equality:
"⟦ n>0; a+^n = 0; (⋀m. m>0 ⟹ a+^m = 0 ⟹ n≤m) ⟧ ⟹
add_order a = n"
using Least_equality[of "λn. n>0 ∧ a+^n = 0"] add_order_def by auto
lemma add_order0: "add_order 0 = 1"
using add_order_equality by simp
lemma add_order_gt0: "(add_order a > 0) = (∃n>0. a+^n = 0)"
using LeastI_ex[of "λn. n>0 ∧ a+^n = 0"] add_order_def by simp
lemma add_order_eq0: "add_order a = 0 ⟹ n>0 ⟹ a+^n ≠ 0"
using add_order_gt0 by force
lemma less_add_order_eq_0:
assumes "a+^k = 0" "k < add_order a"
shows "k = 0"
proof (cases "k=0")
case False
moreover with assms(1) have "∃n>0. a+^n = 0" by fast
ultimately show ?thesis
using assms add_order_def not_less_Least[of k "λn. n>0 ∧ a+^n = 0"]
by auto
qed simp
lemma less_add_order_eq_0_contra: "k>0 ⟹ k < add_order a ⟹ a+^k ≠ 0"
using less_add_order_eq_0 by fast
lemma add_order_relator: "add_order (a+^(add_order a)) = 1"
using add_order by (auto intro: add_order_equality)
abbreviation pair_relator_list :: "'a ⇒ 'a ⇒ 'a list"
where "pair_relator_list s t ≡ alternating_list (2*add_order (s+t)) s t"
abbreviation pair_relator_halflist :: "'a ⇒ 'a ⇒ 'a list"
where "pair_relator_halflist s t ≡ alternating_list (add_order (s+t)) s t"
abbreviation pair_relator_halflist2 :: "'a ⇒ 'a ⇒ 'a list"
where "pair_relator_halflist2 s t ≡
(if even (add_order (s+t)) then pair_relator_halflist s t else
pair_relator_halflist t s)"
lemma sum_list_pair_relator_list: "sum_list (pair_relator_list s t) = 0"
by (auto simp add: add_order alternating_sum_list_conv_nataction)
end
context group_add
begin
lemma add_order_add_eq1: "add_order (s+t) = 1 ⟹ t = -s"
using add_order[of "s+t"] by (simp add: minus_unique)
lemma add_order_add_sym: "add_order (t+s) = add_order (s+t)"
proof (cases "add_order (t+s) = 0" "add_order (s+t) = 0" rule: two_cases)
case one thus ?thesis
using add_order nataction_add_eq0_flip[of s t] add_order_eq0 by auto
next
case other thus ?thesis
using add_order nataction_add_eq0_flip[of t s] add_order_eq0 by auto
next
case neither thus ?thesis
using add_order[of "s+t"] add_order[of "t+s"]
nataction_add_eq0_flip[of s t] nataction_add_eq0_flip[of t s]
add_order_least[of "add_order (s+t)"] add_order_least[of "add_order (t+s)"]
by fastforce
qed simp
lemma pair_relator_halflist_append:
"pair_relator_halflist s t @ pair_relator_halflist2 s t = pair_relator_list s t"
using alternating_list_split[of "add_order (s+t)" "add_order (s+t)" s t]
by (auto simp add: times2_conv_add add_order_add_sym)
lemma rev_pair_relator_list: "rev (pair_relator_list s t) = pair_relator_list t s"
by (simp add:rev_alternating_list add_order_add_sym)
lemma pair_relator_halflist2_conv_rev_pair_relator_halflist:
"pair_relator_halflist2 s t = rev (pair_relator_halflist t s)"
by (auto simp add: add_order_add_sym rev_alternating_list)
end
subsection ‹Partial sums of a list›
text ‹
Here we construct a list that collects the results of adding the elements of a given list
together one-by-one.
›
context monoid_add
begin
primrec sums :: "'a list ⇒ 'a list"
where
"sums [] = [0]"
| "sums (x#xs) = 0 # map ((+) x) (sums xs)"
lemma length_sums: "length (sums xs) = Suc (length xs)"
by (induct xs) auto
lemma sums_snoc: "sums (xs@[x]) = sums xs @ [sum_list (xs@[x])]"
by (induct xs) (auto simp add: add.assoc)
lemma sums_append2:
"sums (xs@ys) = butlast (sums xs) @ map ((+) (sum_list xs)) (sums ys)"
proof (induct ys rule: rev_induct)
case Nil show ?case by (cases xs rule: rev_cases) (auto simp add: sums_snoc)
next
case (snoc y ys) thus ?case using sums_snoc[of "xs@ys"] by (simp add: sums_snoc)
qed
lemma sums_Cons_conv_append_tl:
"sums (x#xs) = 0 # x # map ((+) x) (tl (sums xs))"
by (cases xs) auto
lemma pullback_sums_map_middle2:
"map F (sums xs) = ds@[d,e]@es ⟹
∃as a bs. xs = as@[a]@bs ∧ map F (sums as) = ds@[d] ∧
d = F (sum_list as) ∧ e = F (sum_list (as@[a]))"
proof (induct xs es rule: list_induct2_snoc)
case (Nil2 xs)
show ?case
proof (cases xs rule: rev_cases)
case Nil with Nil2 show ?thesis by simp
next
case (snoc ys y) have ys: "xs = ys@[y]" by fact
with Nil2(1) have y: "map F (sums ys) = ds@[d]" "e = F (sum_list (ys@[y]))"
by (auto simp add: sums_snoc)
show ?thesis
proof (cases ys rule: rev_cases)
case Nil
with ys y have
"xs = []@[y]@[]" "map F (sums []) = ds@[d]"
"d = F (sum_list [])" "e = F (sum_list ([]@[y]))"
by auto
thus ?thesis by fast
next
case (snoc zs z)
with y(1) have z: "map F (sums zs) = ds" "d = F (sum_list (zs@[z]))"
by (auto simp add: sums_snoc)
from z(1) ys y snoc have
"xs = (zs@[z])@[y]@[]" "map F (sums (zs@[z])) = ds@[d]"
"e = F (sum_list ((zs@[z])@[y]))"
by auto
with z(2) show ?thesis by fast
qed
qed
next
case snoc thus ?case by (fastforce simp add: sums_snoc)
qed simp
lemma pullback_sums_map_middle3:
"map F (sums xs) = ds@[d,e,f]@fs ⟹
∃as a b bs. xs = as@[a,b]@bs ∧ d = F (sum_list as) ∧
e = F (sum_list (as@[a])) ∧ f = F (sum_list (as@[a,b]))"
proof (induct xs fs rule: list_induct2_snoc)
case (Nil2 xs)
show ?case
proof (cases xs rule: rev_cases)
case Nil with Nil2 show ?thesis by simp
next
case (snoc ys y)
with Nil2 have y: "map F (sums ys) = ds@[d,e]" "f = F (sum_list (ys@[y]))"
by (auto simp add: sums_snoc)
from y(1) obtain as a bs where asabs:
"ys = as@[a]@bs" "map F (sums as) = ds@[d]"
"d = F (sum_list as)" "e = F (sum_list (as@[a]))"
using pullback_sums_map_middle2[of F ys ds]
by fastforce
have "bs = []"
proof-
from y(1) asabs(1,2) have "Suc (length bs) = Suc 0"
by (auto simp add: sums_append2 map_butlast length_sums[THEN sym])
thus ?thesis by fast
qed
with snoc asabs(1) y(2) have "xs = as@[a,y]@[]" "f = F (sum_list (as@[a,y]))"
by auto
with asabs(3,4) show ?thesis by fast
qed
next
case snoc thus ?case by (fastforce simp add: sums_snoc)
qed simp
lemma pullback_sums_map_double_middle2:
assumes "map F (sums xs) = ds@[d,e]@es@[f,g]@gs"
shows "∃as a bs b cs. xs = as@[a]@bs@[b]@cs ∧ d = F (sum_list as) ∧
e = F (sum_list (as@[a])) ∧ f = F (sum_list (as@[a]@bs)) ∧
g = F (sum_list (as@[a]@bs@[b]))"
proof-
from assms obtain As b cs where Asbcs:
"xs = As@[b]@cs" "map F (sums As) = ds@[d,e]@es@[f]"
"f = F (sum_list As)" "g = F (sum_list (As@[b]))"
using pullback_sums_map_middle2[of F xs "ds@[d,e]@es"]
by fastforce
from Asbcs show ?thesis
using pullback_sums_map_middle2[of F As ds d e "es@[f]"] by fastforce
qed
end
subsection ‹Sums of alternating lists›
lemma (in group_add) uminus_sum_list_alternating_order2:
"s+s=0 ⟹ t+t=0 ⟹ - sum_list (alternating_list n s t) =
sum_list (if even n then alternating_list n t s else alternating_list n s t)"
using uminus_sum_list_order2 set_alternating_list[of n] rev_alternating_list[of n s]
by fastforce
context monoid_add
begin
lemma alternating_order2_cancel_1left:
"s+s=0 ⟹
sum_list (s # (alternating_list (Suc n) s t)) = sum_list (alternating_list n t s)"
using add.assoc[of s s] alternating_list_Suc_Cons[of n s] by simp
lemma alternating_order2_cancel_2left:
"s+s=0 ⟹ t+t=0 ⟹
sum_list (t # s # (alternating_list (Suc (Suc n)) s t)) =
sum_list (alternating_list n s t)"
using alternating_order2_cancel_1left[of s "Suc n"]
alternating_order2_cancel_1left[of t n]
by simp
lemma alternating_order2_even_cancel_right:
assumes st : "s+s=0" "t+t=0"
and even_n: "even n"
shows "m ≤ n ⟹ sum_list (alternating_list n s t @ alternating_list m t s) =
sum_list (alternating_list (n-m) s t)"
proof (induct n arbitrary: m rule: nat_even_induct, rule even_n)
case (SucSuc k) with st show ?case
using alternating_order2_cancel_2left[of t s]
by (cases m rule: nat_cases_2Suc) auto
qed simp
end
subsection ‹Conjugation in @{class group_add}›
subsubsection ‹Abbreviations and basic facts›
context group_add
begin
abbreviation lconjby :: "'a⇒'a⇒'a"
where "lconjby x y ≡ x+y-x"
abbreviation rconjby :: "'a⇒'a⇒'a"
where "rconjby x y ≡ -x+y+x"
lemma lconjby_add: "lconjby (x+y) z = lconjby x (lconjby y z)"
by (auto simp add: algebra_simps)
lemma rconjby_add: "rconjby (x+y) z = rconjby y (rconjby x z)"
by (simp add: minus_add add.assoc[THEN sym])
lemma add_rconjby: "rconjby x y + rconjby x z = rconjby x (y+z)"
by (simp add: add.assoc)
lemma lconjby_uminus: "lconjby x (-y) = - lconjby x y"
using minus_unique[of "lconjby x y", THEN sym] by (simp add: algebra_simps)
lemma rconjby_uminus: "rconjby x (-y) = - rconjby x y"
using minus_unique[of "rconjby x y"] add_assoc4[of "rconjby x y" "-x" "-y" x] by simp
lemma lconjby_rconjby: "lconjby x (rconjby x y) = y"
by (simp add: algebra_simps)
lemma rconjby_lconjby: "rconjby x (lconjby x y) = y"
by (simp add: algebra_simps)
lemma lconjby_inj: "inj (lconjby x)"
using rconjby_lconjby by (fast intro: inj_on_inverseI)
lemma rconjby_inj: "inj (rconjby x)"
using lconjby_rconjby by (fast intro: inj_on_inverseI)
lemma lconjby_surj: "surj (lconjby x)"
using lconjby_rconjby surjI[of "lconjby x"] by fast
lemma lconjby_bij: "bij (lconjby x)"
unfolding bij_def using lconjby_inj lconjby_surj by fast
lemma the_inv_lconjby: "the_inv (lconjby x) = (rconjby x)"
using bij_betw_f_the_inv_into_f[OF lconjby_bij, of _ x] lconjby_rconjby
by (force intro: inj_onD[OF lconjby_inj, of x])
lemma lconjby_eq_conv_rconjby_eq: "w = lconjby x y ⟹ y = rconjby x w"
using the_inv_lconjby the_inv_into_f_f[OF lconjby_inj] by force
lemma rconjby_order2: "s+s = 0 ⟹ rconjby x s + rconjby x s = 0"
by (simp add: add_rconjby)
lemma rconjby_order2_eq_lconjby:
assumes "s+s=0"
shows "rconjby s = lconjby s"
proof-
have "rconjby s = lconjby (-s)" by simp
with assms show ?thesis using minus_unique by simp
qed
lemma lconjby_alternating_list_order2:
assumes "s+s=0" "t+t=0"
shows "lconjby (sum_list (alternating_list k s t)) (if even k then s else t) =
sum_list (alternating_list (Suc (2*k)) s t)"
proof (induct k rule: nat_induct_step2)
case (SucSuc m)
have "lconjby (sum_list (alternating_list (Suc (Suc m)) s t))
(if even (Suc (Suc m)) then s else t) = s + t +
lconjby (sum_list (alternating_list m s t)) (if even m then s else t) - t - s"
using alternating_list_SucSuc_ConsCons[of m s t]
by (simp add: algebra_simps)
also from assms SucSuc
have "… = sum_list (alternating_list (Suc (2*Suc (Suc m))) s t)"
using alternating_list_SucSuc_ConsCons[of "Suc (2*m)" s t]
sum_list.append[of "alternating_list (Suc (2*Suc m)) s t" "[t]"]
by (simp add: algebra_simps)
finally show ?case by fast
qed (auto simp add: assms(1) algebra_simps)
end
subsubsection ‹The conjugation sequence›
text ‹
Given a list in @{class group_add}, we create a new list by conjugating each term by all the
previous terms. This sequence arises in Coxeter systems.
›
context group_add
begin
primrec lconjseq :: "'a list ⇒ 'a list"
where
"lconjseq [] = []"
| "lconjseq (x#xs) = x # (map (lconjby x) (lconjseq xs))"
lemma length_lconjseq: "length (lconjseq xs) = length xs"
by (induct xs) auto
lemma lconjseq_snoc: "lconjseq (xs@[x]) = lconjseq xs @ [lconjby (sum_list xs) x]"
by (induct xs) (auto simp add: lconjby_add)
lemma lconjseq_append:
"lconjseq (xs@ys) = lconjseq xs @ (map (lconjby (sum_list xs)) (lconjseq ys))"
proof (induct ys rule: rev_induct)
case (snoc y ys) thus ?case
using lconjseq_snoc[of "xs@ys"] lconjseq_snoc[of ys] by (simp add: lconjby_add)
qed simp
lemma lconjseq_alternating_order2_repeats':
fixes s t :: 'a
defines altst: "altst ≡ λn. alternating_list n s t"
and altts: "altts ≡ λn. alternating_list n t s"
assumes st : "s+s=0" "t+t=0" "(s+t)+^k = 0"
shows "map (lconjby (sum_list (altst k)))
(lconjseq (if even k then altst m else altts m)) = lconjseq (altst m)"
proof (induct m)
case (Suc j)
with altst altts
have "map (lconjby (sum_list (altst k)))
(lconjseq (if even k then altst (Suc j) else altts (Suc j))) =
lconjseq (altst j) @
[lconjby (sum_list (altst k @ (if even k then altst j else altts j)))
(if even k then (if even j then s else t) else (if even j then t else s))]"
by (auto simp add: lconjseq_snoc lconjby_add)
also from altst altts st(1,2)
have "… = lconjseq (altst j) @ [sum_list (altst (Suc (2*(k+j))))]"
using lconjby_alternating_list_order2[of s t "k+j"]
by (cases "even k")
(auto simp add: alternating_list_append[of k])
finally show ?case using altst st
by (auto simp add:
alternating_list_append(1)[THEN sym]
alternating_sum_list_conv_nataction
lconjby_alternating_list_order2 lconjseq_snoc
)
qed (simp add: altst altts)
lemma lconjseq_alternating_order2_repeats:
fixes s t :: 'a and k :: nat
defines altst: "altst ≡ λn. alternating_list n s t"
and altts: "altts ≡ λn. alternating_list n t s"
assumes st: "s+s=0" "t+t=0" "(s+t)+^k = 0"
shows "lconjseq (altst (2*k)) = lconjseq (altst k) @ lconjseq (altst k)"
proof-
from altst altts
have "lconjseq (altst (2*k)) = lconjseq (altst k) @
map (lconjby (sum_list (altst k)))
(lconjseq (if even k then altst k else altts k))"
using alternating_list_append[THEN sym, of k k s t]
by (auto simp add: times2_conv_add lconjseq_append)
with altst altts st show ?thesis
using lconjseq_alternating_order2_repeats'[of s t k k] by auto
qed
lemma even_count_lconjseq_alternating_order2:
fixes s t :: 'a
assumes "s+s=0" "t+t=0" "(s+t)+^k = 0"
shows "even (count_list (lconjseq (alternating_list (2*k) s t)) x)"
proof-
define xs where xs: "xs ≡ lconjseq (alternating_list (2*k) s t)"
with assms obtain as where "xs = as@as"
using lconjseq_alternating_order2_repeats by fast
hence "count_list xs x = 2 * (count_list as x)"
by (simp add: times2_conv_add)
with xs show ?thesis by simp
qed
lemma order2_hd_in_lconjseq_deletion:
shows "s+s=0 ⟹ s ∈ set (lconjseq ss)
⟹ ∃as b bs. ss = as@[b]@bs ∧ sum_list (s#ss) = sum_list (as@bs)"
proof (induct ss arbitrary: s rule: rev_induct)
case (snoc t ts) show ?case
proof (cases "s ∈ set (lconjseq ts)")
case True
with snoc(1,2) obtain as b bs
where asbbs: "ts = as @[b]@bs" "sum_list (s#ts) = sum_list (as@bs)"
by fastforce
from asbbs(2) have "sum_list (s#ts@[t]) = sum_list (as@(bs@[t]))"
using sum_list.append[of "s#ts" "[t]"] sum_list.append[of "as@bs" "[t]"] by simp
with asbbs(1) show ?thesis by fastforce
next
case False
with snoc(3) have s: "s = lconjby (sum_list ts) t" by (simp add: lconjseq_snoc)
with snoc(2) have "t+t=0"
using lconjby_eq_conv_rconjby_eq[of s "sum_list ts" t]
rconjby_order2[of s "sum_list ts"]
by simp
moreover from s have "sum_list (s#ts@[t]) = sum_list ts + t + t"
using add.assoc[of "sum_list ts + t - sum_list ts" "sum_list ts"]
by (simp add: algebra_simps)
ultimately have "sum_list (s#ts@[t]) = sum_list (ts@[])"
by (simp add: algebra_simps)
thus ?thesis by fast
qed
qed simp
end
subsubsection ‹The action on signed @{class group_add} elements›
text ‹
Here we construct an action of a group on itself by conjugation, where group elements are
endowed with an auxiliary sign by pairing with a boolean element. In multiple applications of
this action, the auxiliary sign helps keep track of how many times the elements conjugating and
being conjugated are the same. This action arises in exploring reduced expressions of group
elements as words in a set of generators of order two (in particular, in a Coxeter group).
›
type_synonym 'a signed = "'a×bool"
definition signed_funaction :: "('a⇒'a⇒'a) ⇒ 'a ⇒ 'a signed ⇒ 'a signed"
where "signed_funaction f s x ≡ map_prod (f s) (λb. b ≠ (fst x = s)) x"
context group_add
begin
abbreviation "signed_lconjaction ≡ signed_funaction lconjby"
abbreviation "signed_rconjaction ≡ signed_funaction rconjby"
lemmas signed_lconjactionD = signed_funaction_def[of lconjby]
lemmas signed_rconjactionD = signed_funaction_def[of rconjby]
abbreviation signed_lconjpermutation :: "'a ⇒ 'a signed permutation"
where "signed_lconjpermutation s ≡ Abs_permutation (signed_lconjaction s)"
abbreviation signed_list_lconjaction :: "'a list ⇒ 'a signed ⇒ 'a signed"
where "signed_list_lconjaction ss ≡ foldr signed_lconjaction ss"
lemma signed_lconjaction_fst: "fst (signed_lconjaction s x) = lconjby s (fst x)"
using signed_lconjactionD by simp
lemma signed_lconjaction_rconjaction:
"signed_lconjaction s (signed_rconjaction s x) = x"
proof-
obtain a::'a and b::bool where "x = (a,b)" by fastforce
thus ?thesis
using signed_lconjactionD signed_rconjactionD injD[OF rconjby_inj, of s a]
lconjby_rconjby[of s a]
by auto
qed
lemma signed_rconjaction_by_order2_eq_lconjaction:
"s+s=0 ⟹ signed_rconjaction s = signed_lconjaction s"
using signed_funaction_def[of lconjby s] signed_funaction_def[of rconjby s]
rconjby_order2_eq_lconjby[of s]
by auto
lemma inj_signed_lconjaction: "inj (signed_lconjaction s)"
proof (rule injI)
fix x y assume 1: "signed_lconjaction s x = signed_lconjaction s y"
moreover obtain a1 a2 :: 'a and b1 b2 :: bool
where xy: "x = (a1,b1)" "y = (a2,b2)"
by fastforce
ultimately show "x=y"
using injD[OF lconjby_inj, of s a1 a2] signed_lconjactionD
by (cases "a1=s" "a2=s" rule: two_cases) auto
qed
lemma surj_signed_lconjaction: "surj (signed_lconjaction s)"
using signed_lconjaction_rconjaction[THEN sym] by fast
lemma bij_signed_lconjaction: "bij (signed_lconjaction s)"
using inj_signed_lconjaction surj_signed_lconjaction by (fast intro: bijI)
lemma the_inv_signed_lconjaction:
"the_inv (signed_lconjaction s) = signed_rconjaction s"
proof
fix x
show "the_inv (signed_lconjaction s) x = signed_rconjaction s x"
proof (rule the_inv_into_f_eq, rule inj_signed_lconjaction)
show "signed_lconjaction s (signed_rconjaction s x) = x"
using signed_lconjaction_rconjaction by fast
qed (simp add: surj_signed_lconjaction)
qed
lemma the_inv_signed_lconjaction_by_order2:
"s+s=0 ⟹ the_inv (signed_lconjaction s) = signed_lconjaction s"
using the_inv_signed_lconjaction signed_rconjaction_by_order2_eq_lconjaction
by simp
lemma signed_list_lconjaction_fst:
"fst (signed_list_lconjaction ss x) = lconjby (sum_list ss) (fst x)"
using signed_lconjaction_fst lconjby_add by (induct ss) auto
lemma signed_list_lconjaction_snd:
shows "∀s∈set ss. s+s=0 ⟹ snd (signed_list_lconjaction ss x)
= (if even (count_list (lconjseq (rev ss)) (fst x)) then snd x else ¬snd x)"
proof (induct ss)
case (Cons s ss) hence prevcase:
"snd (signed_list_lconjaction ss x) =
(if even (count_list (lconjseq (rev ss)) (fst x)) then snd x else ¬ snd x)"
by simp
have 1: "snd (signed_list_lconjaction (s # ss) x) =
snd (signed_lconjaction s (signed_list_lconjaction ss x))"
by simp
show ?case
proof (cases "fst (signed_list_lconjaction ss x) = s")
case True
with 1 prevcase
have "snd (signed_list_lconjaction (s # ss) x) =
(if even (count_list (lconjseq (rev ss)) (fst x)) then ¬ snd x else snd x)"
by (simp add: signed_lconjactionD)
with True Cons(2) rconjby_lconjby show ?thesis
by (auto simp add: signed_list_lconjaction_fst lconjseq_snoc
simp flip: uminus_sum_list_order2
)
next
case False
hence "rconjby (sum_list ss) (lconjby (sum_list ss) (fst x)) ≠
rconjby (sum_list ss) s"
by (simp add: signed_list_lconjaction_fst)
with Cons(2)
have "count_list (lconjseq (rev (s#ss))) (fst x) =
count_list (lconjseq (rev ss)) (fst x)"
by (simp add:
rconjby_lconjby uminus_sum_list_order2[THEN sym]
lconjseq_snoc
)
moreover from False 1 prevcase
have "snd (signed_list_lconjaction (s # ss) x) =
(if even (count_list (lconjseq (rev ss)) (fst x)) then snd x else ¬ snd x)"
by (simp add: signed_lconjactionD)
ultimately show ?thesis by simp
qed
qed simp
end
subsection ‹Cosets›
subsubsection ‹Basic facts›
lemma set_zero_plus' [simp]: "(0::'a::monoid_add) +o C = C"
by (auto simp add: elt_set_plus_def)
lemma lcoset_0: "(w::'a::monoid_add) +o 0 = {w}"
using elt_set_plus_def[of w] by simp
lemma lcoset_refl: "(0::'a::monoid_add) ∈ A ⟹ a ∈ a +o A"
using elt_set_plus_def by force
lemma lcoset_eq_reps_subset:
"(a::'a::group_add) +o A ⊆ a +o B ⟹ A ⊆ B"
using elt_set_plus_def[of a] by auto
lemma lcoset_eq_reps: "(a::'a::group_add) +o A = a +o B ⟹ A = B"
using lcoset_eq_reps_subset[of a A B] lcoset_eq_reps_subset[of a B A] by auto
lemma lcoset_inj_on: "inj ((+o) (a::'a::group_add))"
using lcoset_eq_reps inj_onI[of UNIV "(+o) a"] by auto
lemma lcoset_conv_set: "(a::'g::group_add) ∈ b +o A ⟹ -b + a ∈ A"
by (auto simp add: elt_set_plus_def)
subsubsection ‹The supset order on cosets›
lemma supset_lbound_lcoset_shift:
"supset_lbound_of X Y B ⟹
ordering.lbound_of (⊇) (a +o X) (a +o Y) (a +o B)"
using ordering.lbound_of_def[OF supset_poset, of X Y B]
by (fast intro: ordering.lbound_ofI supset_poset)
lemma supset_glbound_in_of_lcoset_shift:
fixes P :: "'a::group_add set set"
assumes "supset_glbound_in_of P X Y B"
shows "supset_glbound_in_of ((+o) a ` P) (a +o X) (a +o Y) (a +o B)"
using ordering.glbound_in_ofD_in[OF supset_poset, OF assms]
ordering.glbound_in_ofD_lbound[OF supset_poset, OF assms]
supset_lbound_lcoset_shift[of X Y B a]
supset_lbound_lcoset_shift[of "a +o X" "a +o Y" _ "-a"]
ordering.glbound_in_ofD_glbound[OF supset_poset, OF assms]
ordering.glbound_in_ofI[
OF supset_poset, of "a +o B" "(+o) a ` P" "a +o X" "a +o Y"
]
by (fastforce simp add: set_plus_rearrange2)
subsubsection ‹The afforded partition›
definition lcoset_rel :: "'a::{uminus,plus} set ⇒ ('a×'a) set"
where "lcoset_rel A ≡ {(x,y). -x + y ∈ A}"
lemma lcoset_relI: "-x+y ∈ A ⟹ (x,y) ∈ lcoset_rel A"
using lcoset_rel_def by fast
subsection ‹Groups›
text ‹We consider groups as closed sets in a type of class @{class group_add}.›
subsubsection ‹Locale definition and basic facts›
locale Group =
fixes G :: "'g::group_add set"
assumes nonempty : "G ≠ {}"
and diff_closed: "⋀g h. g ∈ G ⟹ h ∈ G ⟹ g - h ∈ G"
begin
abbreviation Subgroup :: "'g set ⇒ bool"
where "Subgroup H ≡ Group H ∧ H ⊆ G"
lemma SubgroupD1: "Subgroup H ⟹ Group H" by fast
lemma zero_closed : "0 ∈ G"
proof-
from nonempty obtain g where "g ∈ G" by fast
hence "g - g ∈ G" using diff_closed by fast
thus ?thesis by simp
qed
lemma uminus_closed: "g∈G ⟹ -g∈G"
using zero_closed diff_closed[of 0 g] by simp
lemma add_closed: "g∈G ⟹ h∈G ⟹ g+h ∈ G"
using uminus_closed[of h] diff_closed[of g "-h"] by simp
lemma uminus_add_closed: "g ∈ G ⟹ h ∈ G ⟹ -g + h ∈ G"
using uminus_closed add_closed by fast
lemma lconjby_closed: "g∈G ⟹ x∈G ⟹ lconjby g x ∈ G"
using add_closed diff_closed by fast
lemma lconjby_set_closed: "g∈G ⟹ A⊆G ⟹ lconjby g ` A ⊆ G"
using lconjby_closed by fast
lemma set_lconjby_subset_closed:
"H⊆G ⟹ A⊆G ⟹ (⋃h∈H. lconjby h ` A) ⊆ G"
using lconjby_set_closed[of _ A] by fast
lemma sum_list_map_closed: "set (map f as) ⊆ G ⟹ (∑a←as. f a) ∈ G"
using zero_closed add_closed by (induct as) auto
lemma sum_list_closed: "set as ⊆ G ⟹ sum_list as ∈ G"
using sum_list_map_closed by force
end
subsubsection ‹Sets with a suitable binary operation›
text ‹
We have chosen to only consider groups in types of class @{class group_add} so that we can take
advantage of all the algebra lemmas already proven in @{theory HOL.Groups}, as well as
constructs like @{const sum_list}. The following locale builds a bridge between this restricted
view of groups and the usual notion of a binary operation on a set satisfying the group axioms,
by constructing an injective map into type @{type permutation} (which is of class
@{class group_add} with respect to the composition operation) that respects the group operation.
This bridge will be necessary to define quotient groups, in particular.
›
locale BinOpSetGroup =
fixes G :: "'a set"
and binop :: "'a⇒'a⇒'a"
and e :: "'a"
assumes closed : "g∈G ⟹ h∈G ⟹ binop g h ∈ G"
and assoc :
"⟦ g∈G; h∈G; k∈G ⟧ ⟹ binop (binop g h) k = binop g (binop h k)"
and identity: "e∈G" "g∈G ⟹ binop g e = g" "g∈G ⟹ binop e g = g"
and inverses: "g∈G ⟹ ∃h∈G. binop g h = e ∧ binop h g = e"
begin
lemma unique_identity1: "g∈G ⟹ ∀x∈G. binop g x = x ⟹ g = e"
using identity(1,2) by auto
lemma unique_inverse:
assumes "g∈G"
shows "∃!h. h∈G ∧ binop g h = e ∧ binop h g = e"
proof (rule ex_ex1I)
from assms show "∃h. h ∈ G ∧ binop g h = e ∧ binop h g = e"
using inverses by fast
next
fix h k
assume "h∈G ∧ binop g h = e ∧ binop h g = e" "k∈G ∧
binop g k = e ∧ binop k g = e"
hence h: "h∈G" "binop g h = e" "binop h g = e"
and k: "k∈G" "binop g k = e" "binop k g = e"
by auto
from assms h(1,3) k(1,2) show "h=k" using identity(2,3) assoc by force
qed
abbreviation "G_perm g ≡ restrict1 (binop g) G"
definition Abs_G_perm :: "'a ⇒ 'a permutation"
where "Abs_G_perm g ≡ Abs_permutation (G_perm g)"
abbreviation "𝔭 ≡ Abs_G_perm"
abbreviation "𝔦𝔭 ≡ the_inv_into G 𝔭"
abbreviation "pG ≡ 𝔭`G"
lemma G_perm_comp:
"g∈G ⟹ h∈G ⟹ G_perm g ∘ G_perm h = G_perm (binop g h)"
using closed by (auto simp add: assoc)
definition the_inverse :: "'a ⇒ 'a"
where "the_inverse g ≡ (THE h. h∈G ∧ binop g h = e ∧ binop h g = e)"
abbreviation "𝔦 ≡ the_inverse"
lemma the_inverseD:
assumes "g∈G"
shows "𝔦 g ∈ G" "binop g (𝔦 g) = e" "binop (𝔦 g) g = e"
using assms theI'[OF unique_inverse]
unfolding the_inverse_def
by auto
lemma binop_G_comp_binop_𝔦G: "g∈G ⟹ x∈G ⟹ binop g (binop (𝔦 g) x) = x"
using the_inverseD(1) assoc[of g "𝔦 g" x] by (simp add: identity(3) the_inverseD(2))
lemma bij_betw_binop_G:
assumes "g∈G"
shows "bij_betw (binop g) G G"
unfolding bij_betw_def
proof
show "inj_on (binop g) G"
proof (rule inj_onI)
fix h k assume hk: "h∈G" "k∈G" "binop g h = binop g k"
with assms have "binop (binop (𝔦 g) g) h = binop (binop (𝔦 g) g) k"
using the_inverseD(1) by (simp add: assoc)
with assms hk(1,2) show "h=k" using the_inverseD(3) identity by simp
qed
show "binop g ` G = G"
proof
from assms show "binop g ` G ⊆ G" using closed by fast
from assms show "binop g ` G ⊇ G"
using binop_G_comp_binop_𝔦G[THEN sym] the_inverseD(1) closed by fast
qed
qed
lemma the_inv_into_G_binop_G:
assumes "g∈G" "x∈G"
shows "the_inv_into G (binop g) x = binop (𝔦 g) x"
proof (rule the_inv_into_f_eq)
from assms(1) show "inj_on (binop g) G"
using bij_betw_imp_inj_on[OF bij_betw_binop_G] by fast
from assms show "binop g (binop (𝔦 g) x) = x"
using binop_G_comp_binop_𝔦G by fast
from assms show "binop (𝔦 g) x ∈ G" using closed the_inverseD(1) by fast
qed
lemma restrict1_the_inv_into_G_binop_G:
"g∈G ⟹ restrict1 (the_inv_into G (binop g)) G = G_perm (𝔦 g)"
using the_inv_into_G_binop_G by auto
lemma bij_G_perm: "g∈G ⟹ bij (G_perm g)"
using set_permutation_bij_restrict1 bij_betw_binop_G by fast
lemma G_perm_apply: "g∈G ⟹ x∈G ⟹ 𝔭 g → x = binop g x"
using Abs_G_perm_def Abs_permutation_inverse bij_G_perm by fastforce
lemma G_perm_apply_identity: "g∈G ⟹ 𝔭 g → e = g"
using G_perm_apply identity(1,2) by simp
lemma the_inv_G_perm:
"g∈G ⟹ the_inv (G_perm g) = G_perm (𝔦 g)"
using set_permutation_the_inv_restrict1 bij_betw_binop_G
restrict1_the_inv_into_G_binop_G
by fastforce
lemma Abs_G_perm_diff:
"g∈G ⟹ h∈G ⟹ 𝔭 g - 𝔭 h = 𝔭 (binop g (𝔦 h))"
using Abs_G_perm_def minus_permutation_abs_eq[OF bij_G_perm bij_G_perm]
the_inv_G_perm G_perm_comp the_inverseD(1)
by simp
lemma Group: "Group pG"
using identity(1) Abs_G_perm_diff the_inverseD(1) closed by unfold_locales auto
lemma inj_on_𝔭_G: "inj_on 𝔭 G"
proof (rule inj_onI)
fix x y assume xy: "x∈G" "y∈G" "𝔭 x = 𝔭 y"
hence "Abs_permutation (G_perm (binop x (𝔦 y))) = Abs_permutation id"
using Abs_G_perm_diff Abs_G_perm_def
by (fastforce simp add: zero_permutation.abs_eq)
moreover from xy(1,2) have 1: "binop x (𝔦 y) ∈ G"
using bij_id closed the_inverseD(1) by fast
ultimately have 2: "G_perm (binop x (𝔦 y)) = id"
using Abs_permutation_inject[of "G_perm (binop x (𝔦 y))"] bij_G_perm bij_id
by simp
have "∀z∈G. binop (binop x (𝔦 y)) z = z"
proof
fix z assume "z∈G"
thus "binop (binop x (𝔦 y)) z = z" using fun_cong[OF 2, of z] by simp
qed
with xy(1,2) have "binop x (binop (𝔦 y) y) = y"
using unique_identity1[OF 1] the_inverseD(1) by (simp add: assoc)
with xy(1,2) show "x = y" using the_inverseD(3) identity(2) by simp
qed
lemma homs:
"⋀g h. g∈G ⟹ h∈G ⟹ 𝔭 (binop g h) = 𝔭 g + 𝔭 h"
"⋀x y. x∈pG ⟹ y∈pG ⟹ binop (𝔦𝔭 x) (𝔦𝔭 y) = 𝔦𝔭 (x+y)"
proof-
show 1: "⋀g h. g∈G ⟹ h∈G ⟹ 𝔭 (binop g h) = 𝔭 g + 𝔭 h"
using Abs_G_perm_def G_perm_comp
plus_permutation_abs_eq[OF bij_G_perm bij_G_perm]
by simp
show "⋀x y. x∈pG ⟹ y∈pG ⟹ binop (𝔦𝔭 x) (𝔦𝔭 y) = 𝔦𝔭 (x+y)"
proof-
fix x y assume "x∈pG" "y∈pG"
moreover hence "𝔦𝔭 (𝔭 (binop (𝔦𝔭 x) (𝔦𝔭 y))) = 𝔦𝔭 (x + y)"
using 1 the_inv_into_into[OF inj_on_𝔭_G] f_the_inv_into_f[OF inj_on_𝔭_G]
by simp
ultimately show "binop (𝔦𝔭 x) (𝔦𝔭 y) = 𝔦𝔭 (x+y)"
using the_inv_into_into[OF inj_on_𝔭_G] closed the_inv_into_f_f[OF inj_on_𝔭_G]
by simp
qed
qed
lemmas inv_correspondence_into =
the_inv_into_into[OF inj_on_𝔭_G, of _ G, simplified]
lemma inv_correspondence_conv_apply: "x ∈ pG ⟹ 𝔦𝔭 x = x→e"
using G_perm_apply_identity inj_on_𝔭_G by (auto intro: the_inv_into_f_eq)
end
subsubsection ‹Cosets of a @{const Group}›
context Group
begin
lemma lcoset_refl: "a ∈ a +o G"
using lcoset_refl zero_closed by fast
lemma lcoset_el_reduce:
assumes "a ∈ G"
shows "a +o G = G"
proof (rule seteqI)
fix x assume "x ∈ a +o G"
from this obtain g where "g∈G" "x = a+g" using elt_set_plus_def[of a] by auto
with assms show "x∈G" by (simp add: add_closed)
next
fix x assume "x∈G"
with assms have "-a + x ∈ G" by (simp add: uminus_add_closed)
thus "x ∈ a +o G" using elt_set_plus_def by force
qed
lemma lcoset_el_reduce0: "0 ∈ a +o G ⟹ a +o G = G"
using elt_set_plus_def[of a G] minus_unique uminus_closed[of "-a"]
lcoset_el_reduce
by fastforce
lemma lcoset_subgroup_imp_eq_reps:
"Group H ⟹ w +o H ⊆ w' +o G ⟹ w' +o G = w +o G"
using Group.lcoset_refl[of H w] lcoset_conv_set[of w] lcoset_el_reduce
set_plus_rearrange2[of w' "-w'+w" G]
by force
lemma lcoset_closed: "a∈G ⟹ A⊆G ⟹ a +o A ⊆ G"
using elt_set_plus_def[of a] add_closed by auto
lemma lcoset_rel_sym: "sym (lcoset_rel G)"
proof (rule symI)
fix a b show "(a,b) ∈ lcoset_rel G ⟹ (b,a) ∈ lcoset_rel G"
using uminus_closed minus_add[of "-a" b] lcoset_rel_def[of G] by fastforce
qed
lemma lcoset_rel_trans: "trans (lcoset_rel G)"
proof (rule transI)
fix x y z assume xy: "(x,y) ∈ lcoset_rel G" and yz: "(y,z) ∈ lcoset_rel G"
from this obtain g g' where "g∈G" "-x+y = g" "g'∈G" "-y+z = g'"
using lcoset_rel_def[of G] by fast
thus "(x, z) ∈ lcoset_rel G"
using add.assoc[of g "-y" z] add_closed lcoset_rel_def[of G] by auto
qed
abbreviation LCoset_rel :: "'g set ⇒ ('g×'g) set"
where "LCoset_rel H ≡ lcoset_rel H ∩ (G×G)"
lemma refl_on_LCoset_rel: "0∈H ⟹ refl_on G (LCoset_rel H)"
using lcoset_rel_def by (fastforce intro: refl_onI)
lemmas subgroup_refl_on_LCoset_rel =
refl_on_LCoset_rel[OF Group.zero_closed, OF SubgroupD1]
lemmas LCoset_rel_quotientI = quotientI[of _ G "LCoset_rel _"]
lemmas LCoset_rel_quotientE = quotientE[of _ G "LCoset_rel _"]
lemma lcoset_subgroup_rel_equiv:
"Subgroup H ⟹ equiv G (LCoset_rel H)"
using Group.lcoset_rel_sym sym_sym sym_Int Group.lcoset_rel_trans trans_sym
trans_Int subgroup_refl_on_LCoset_rel
by (blast intro: equivI)
lemma trivial_LCoset: "H⊆G ⟹ H = LCoset_rel H `` {0}"
using zero_closed unfolding lcoset_rel_def by auto
end
subsubsection ‹The @{const Group} generated by a set›
inductive_set genby :: "'a::group_add set ⇒ 'a set" ("⟨_⟩")
for S :: "'a set"
where
genby_0_closed : "0∈⟨S⟩"
| genby_genset_closed: "s∈S ⟹ s∈⟨S⟩"
| genby_diff_closed : "w∈⟨S⟩ ⟹ w'∈⟨S⟩ ⟹ w - w' ∈ ⟨S⟩"
lemma genby_Group: "Group ⟨S⟩"
using genby_0_closed genby_diff_closed by unfold_locales fast
lemmas genby_uminus_closed = Group.uminus_closed [OF genby_Group]
lemmas genby_add_closed = Group.add_closed [OF genby_Group]
lemmas genby_uminus_add_closed = Group.uminus_add_closed [OF genby_Group]
lemmas genby_lcoset_refl = Group.lcoset_refl [OF genby_Group]
lemmas genby_lcoset_el_reduce = Group.lcoset_el_reduce [OF genby_Group]
lemmas genby_lcoset_el_reduce0 = Group.lcoset_el_reduce0 [OF genby_Group]
lemmas genby_lcoset_closed = Group.lcoset_closed [OF genby_Group]
lemmas genby_lcoset_subgroup_imp_eq_reps =
Group.lcoset_subgroup_imp_eq_reps[OF genby_Group, OF genby_Group]
lemma genby_genset_subset: "S ⊆ ⟨S⟩"
using genby_genset_closed by fast
lemma genby_uminus_genset_subset: "uminus ` S ⊆ ⟨S⟩"
using genby_genset_subset genby_uminus_closed by auto
lemma genby_in_sum_list_lists:
fixes S
defines S_sum_lists: "S_sum_lists ≡ (⋃ss∈lists (S ∪ uminus ` S). {sum_list ss})"
shows "w ∈ ⟨S⟩ ⟹ w ∈ S_sum_lists"
proof (erule genby.induct)
have "0 = sum_list []" by simp
with S_sum_lists show "0 ∈ S_sum_lists" by blast
next
fix s assume "s∈S"
hence "[s] ∈ lists (S ∪ uminus ` S)" by simp
moreover have "s = sum_list [s]" by simp
ultimately show "s ∈ S_sum_lists" using S_sum_lists by blast
next
fix w w' assume ww': "w ∈ S_sum_lists" "w' ∈ S_sum_lists"
with S_sum_lists obtain ss ts
where ss: "ss ∈ lists (S ∪ uminus ` S)" "w = sum_list ss"
and ts: "ts ∈ lists (S ∪ uminus ` S)" "w' = sum_list ts"
by fastforce
from ss(2) ts(2) have "w-w' = sum_list (ss @ map uminus (rev ts))"
by (simp add: diff_conv_add_uminus uminus_sum_list)
moreover from ss(1) ts(1)
have "ss @ map uminus (rev ts) ∈ lists (S ∪ uminus ` S)"
by fastforce
ultimately show "w - w' ∈ S_sum_lists" using S_sum_lists by fast
qed
lemma sum_list_lists_in_genby: "ss ∈ lists (S ∪ uminus ` S) ⟹ sum_list ss ∈ ⟨S⟩"
proof (induct ss)
case Nil show ?case using genby_0_closed by simp
next
case (Cons s ss) thus ?case
using genby_genset_subset[of S] genby_uminus_genset_subset
genby_add_closed[of s S "sum_list ss"]
by auto
qed
lemma sum_list_lists_in_genby_sym:
"uminus ` S ⊆ S ⟹ ss ∈ lists S ⟹ sum_list ss ∈ ⟨S⟩"
using sum_list_lists_in_genby by fast
lemma genby_eq_sum_lists: "⟨S⟩ = (⋃ss∈lists (S ∪ uminus ` S). {sum_list ss})"
using genby_in_sum_list_lists sum_list_lists_in_genby by fast
lemma genby_mono: "T ⊆ S ⟹ ⟨T⟩ ⊆ ⟨S⟩"
using genby_eq_sum_lists[of T] genby_eq_sum_lists[of S] by force
lemma (in Group) genby_closed:
assumes "S ⊆ G"
shows "⟨S⟩ ⊆ G"
proof
fix x show "x ∈ ⟨S⟩ ⟹ x ∈ G"
proof (erule genby.induct, rule zero_closed)
from assms show "⋀s. s∈S ⟹ s∈G" by fast
show "⋀w w'. w∈G ⟹ w'∈G ⟹ w-w' ∈ G" using diff_closed by fast
qed
qed
lemma (in Group) genby_subgroup: "S ⊆ G ⟹ Subgroup ⟨S⟩"
using genby_closed genby_Group by simp
lemma genby_sym_eq_sum_lists:
"uminus ` S ⊆ S ⟹ ⟨S⟩ = (⋃ss∈lists S. {sum_list ss})"
using lists_mono genby_eq_sum_lists[of S] by force
lemma genby_empty': "w ∈ ⟨{}⟩ ⟹ w = 0"
proof (erule genby.induct) qed auto
lemma genby_order2':
assumes "s+s=0"
shows "w ∈ ⟨{s}⟩ ⟹ w = 0 ∨ w = s"
proof (erule genby.induct)
fix w w' assume "w = 0 ∨ w = s" "w' = 0 ∨ w' = s"
with assms show "w - w' = 0 ∨ w - w' = s"
by (cases "w'=0") (auto simp add: minus_unique)
qed auto
lemma genby_order2: "s+s=0 ⟹ ⟨{s}⟩ = {0,s}"
using genby_order2'[of s] genby_0_closed genby_genset_closed by auto
lemma genby_empty: "⟨{}⟩ = 0"
using genby_empty' genby_0_closed by auto
lemma genby_lcoset_order2: "s+s=0 ⟹ w +o ⟨{s}⟩ = {w,w+s}"
using elt_set_plus_def[of w] by (auto simp add: genby_order2)
lemma genby_lcoset_empty: "(w::'a::group_add) +o ⟨{}⟩ = {w}"
proof-
have "⟨{}::'a set⟩ = (0::'a set)" using genby_empty by fast
thus ?thesis using lcoset_0 by simp
qed
lemma (in Group) genby_set_lconjby_set_lconjby_closed:
fixes A :: "'g set"
defines "S ≡ (⋃g∈G. lconjby g ` A)"
assumes "g∈G"
shows "x ∈ ⟨S⟩ ⟹ lconjby g x ∈ ⟨S⟩"
proof (erule genby.induct)
show "lconjby g 0 ∈ ⟨S⟩" using genby_0_closed by simp
from assms show "⋀s. s ∈ S ⟹ lconjby g s ∈ ⟨S⟩"
using add_closed genby_genset_closed[of _ S] by (force simp add: lconjby_add)
next
fix w w'
assume ww': "lconjby g w ∈ ⟨S⟩" "lconjby g w' ∈ ⟨S⟩"
have "lconjby g (w - w') = lconjby g w + lconjby g (-w')"
by (simp add: algebra_simps)
with ww' show "lconjby g (w - w') ∈ ⟨S⟩"
using lconjby_uminus[of g] diff_conv_add_uminus[of _ "lconjby g w'"]
genby_diff_closed
by fastforce
qed
lemma (in Group) genby_set_lconjby_set_rconjby_closed:
fixes A :: "'g set"
defines "S ≡ (⋃g∈G. lconjby g ` A)"
assumes "g∈G" "x ∈ ⟨S⟩"
shows "rconjby g x ∈ ⟨S⟩"
using assms uminus_closed genby_set_lconjby_set_lconjby_closed
by fastforce
subsubsection ‹Homomorphisms and isomorphisms›
locale GroupHom = Group G
for G :: "'g::group_add set"
+ fixes T :: "'g ⇒ 'h::group_add"
assumes hom : "g ∈ G ⟹ g' ∈ G ⟹ T (g + g') = T g + T g'"
and supp: "supp T ⊆ G"
begin
lemma im_zero: "T 0 = 0"
using zero_closed hom[of 0 0] add_diff_cancel[of "T 0" "T 0"] by simp
lemma im_uminus: "T (- g) = - T g"
using im_zero hom[of g "- g"] uminus_closed[of g] minus_unique[of "T g"]
uminus_closed[of "-g"] supp suppI_contra[of g T]
suppI_contra[of "-g" T]
by fastforce
lemma im_uminus_add: "g ∈ G ⟹ g' ∈ G ⟹ T (-g + g') = - T g + T g'"
by (simp add: uminus_closed hom im_uminus)
lemma im_diff: "g ∈ G ⟹ g' ∈ G ⟹ T (g - g') = T g - T g'"
using hom uminus_closed hom[of g "-g'"] im_uminus by simp
lemma im_lconjby: "x ∈ G ⟹ g ∈ G ⟹ T (lconjby x g) = lconjby (T x) (T g)"
using add_closed by (simp add: im_diff hom)
lemma im_sum_list_map:
"set (map f as) ⊆ G ⟹ T (∑a←as. f a) = (∑a←as. T (f a))"
using hom im_zero sum_list_closed by (induct as) auto
lemma comp:
assumes "GroupHom H S" "T`G ⊆ H"
shows "GroupHom G (S ∘ T)"
proof
fix g g' assume "g ∈ G" "g' ∈ G"
with hom assms(2) show "(S ∘ T) (g + g') = (S ∘ T) g + (S ∘ T) g'"
using GroupHom.hom[OF assms(1)] by fastforce
next
from supp have "⋀g. g ∉ G ⟹ (S ∘ T) g = 0"
using suppI_contra GroupHom.im_zero[OF assms(1)] by fastforce
thus "supp (S ∘ T) ⊆ G" using suppD_contra by fast
qed
end
definition ker :: "('a⇒'b::zero) ⇒ 'a set"
where "ker f = {a. f a = 0}"
lemma ker_subset_ker_restrict0: "ker f ⊆ ker (restrict0 f A)"
unfolding ker_def by auto
context GroupHom
begin
abbreviation "Ker ≡ ker T ∩ G"
lemma uminus_add_in_Ker_eq_eq_im:
"g∈G ⟹ h∈G ⟹ (-g + h ∈ Ker) = (T g = T h)"
using neg_equal_iff_equal
by (simp add: uminus_add_closed ker_def im_uminus_add eq_neg_iff_add_eq_0)
end
locale UGroupHom = GroupHom UNIV T
for T :: "'g::group_add ⇒ 'h::group_add"
begin
lemmas im_zero = im_zero
lemmas im_uminus = im_uminus
lemma hom: "T (g+g') = T g + T g'"
using hom by simp
lemma im_diff: "T (g - g') = T g - T g'"
using im_diff by simp
lemma im_lconjby: "T (lconjby x g) = lconjby (T x) (T g)"
using im_lconjby by simp
lemma restrict0:
assumes "Group G"
shows "GroupHom G (restrict0 T G)"
proof (intro_locales, rule assms, unfold_locales)
from hom
show "⋀g g'. g ∈ G ⟹ g' ∈ G ⟹
restrict0 T G (g + g') = restrict0 T G g + restrict0 T G g'"
using Group.add_closed[OF assms]
by auto
show "supp (restrict0 T G) ⊆ G" using supp_restrict0[of G T] by fast
qed
end
lemma UGroupHomI:
assumes "⋀g g'. T (g + g') = T g + T g'"
shows "UGroupHom T"
using assms
by unfold_locales auto
locale GroupIso = GroupHom G T
for G :: "'g::group_add set"
and T :: "'g ⇒ 'h::group_add"
+ assumes inj_on: "inj_on T G"
lemma (in GroupHom) isoI:
assumes "⋀k. k∈G ⟹ T k = 0 ⟹ k=0"
shows "GroupIso G T"
proof (unfold_locales, rule inj_onI)
fix x y from assms show "⟦ x∈G; y∈G; T x = T y ⟧ ⟹ x = y"
using im_diff diff_closed by force
qed
text ‹
In a @{const BinOpSetGroup}, any map from the set into a type of class @{class group_add} that respects the
binary operation induces a @{const GroupHom}.
›
abbreviation (in BinOpSetGroup) "lift_hom T ≡ restrict0 (T ∘ 𝔦𝔭) pG"
lemma (in BinOpSetGroup) lift_hom:
fixes T :: "'a ⇒ 'b::group_add"
assumes "∀g∈G. ∀h∈G. T (binop g h) = T g + T h"
shows "GroupHom pG (lift_hom T)"
proof (intro_locales, rule Group, unfold_locales)
from assms
show "⋀x y. x∈pG ⟹ y∈pG ⟹
lift_hom T (x+y) = lift_hom T x + lift_hom T y"
using Group.add_closed[OF Group] inv_correspondence_into
by (simp add: homs(2)[THEN sym])
qed (rule supp_restrict0)
subsubsection ‹Normal subgroups›
definition rcoset_rel :: "'a::{minus,plus} set ⇒ ('a×'a) set"
where "rcoset_rel A ≡ {(x,y). x-y ∈ A}"
context Group
begin
lemma rcoset_rel_conv_lcoset_rel:
"rcoset_rel G = map_prod uminus uminus ` (lcoset_rel G)"
proof (rule set_eqI)
fix x :: "'g×'g"
obtain a b where ab: "x=(a,b)" by fastforce
hence "(x ∈ rcoset_rel G) = (a-b ∈ G)" using rcoset_rel_def by auto
also have "… = ( (-b,-a) ∈ lcoset_rel G )"
using uminus_closed lcoset_rel_def by fastforce
finally
show "(x ∈ rcoset_rel G) = (x ∈ map_prod uminus uminus ` (lcoset_rel G))"
using ab symD[OF lcoset_rel_sym] map_prod_def
by force
qed
lemma rcoset_rel_sym: "sym (rcoset_rel G)"
using rcoset_rel_conv_lcoset_rel map_prod_sym lcoset_rel_sym by simp
abbreviation RCoset_rel :: "'g set ⇒ ('g×'g) set"
where "RCoset_rel H ≡ rcoset_rel H ∩ (G×G)"
definition normal :: "'g set ⇒ bool"
where "normal H ≡ (∀g∈G. LCoset_rel H `` {g} = RCoset_rel H `` {g})"
lemma normalI:
assumes "Group H" "∀g∈G. ∀h∈H. ∃h'∈H. g+h = h'+g"
"∀g∈G. ∀h∈H. ∃h'∈H. h+g = g+h'"
shows "normal H"
unfolding normal_def
proof
fix g assume g: "g∈G"
show "LCoset_rel H `` {g} = RCoset_rel H `` {g}"
proof (rule seteqI)
fix x assume "x ∈ LCoset_rel H `` {g}"
with g have x: "x∈G" "-g+x ∈ H" unfolding lcoset_rel_def by auto
from g x(2) assms(2) obtain h where h: "h∈H" "g-x = -h"
by (fastforce simp add: algebra_simps)
with assms(1) g x(1) show "x ∈ RCoset_rel H `` {g}"
using Group.uminus_closed unfolding rcoset_rel_def by simp
next
fix x assume "x ∈ RCoset_rel H `` {g}"
with g have x: "x∈G" "g-x ∈ H" unfolding rcoset_rel_def by auto
with assms(3) obtain h where h: "h∈H" "-g+x = -h"
by (fastforce simp add: algebra_simps minus_add)
with assms(1) g x(1) show "x ∈ LCoset_rel H `` {g}"
using Group.uminus_closed unfolding lcoset_rel_def by simp
qed
qed
lemma normal_lconjby_closed:
"⟦ Subgroup H; normal H; g∈G; h∈H ⟧ ⟹ lconjby g h ∈ H"
using lcoset_relI[of g "g+h" H] add_closed[of g h] normal_def[of H]
symD[OF Group.rcoset_rel_sym, of H g "g+h"] rcoset_rel_def[of H]
by auto
lemma normal_rconjby_closed:
"⟦ Subgroup H; normal H; g∈G; h∈H ⟧ ⟹ rconjby g h ∈ H"
using normal_lconjby_closed[of H "-g" h] uminus_closed[of g] by auto
abbreviation "normal_closure A ≡ ⟨⋃g∈G. lconjby g ` A⟩"
lemma (in Group) normal_closure:
assumes "A⊆G"
shows "normal (normal_closure A)"
proof (rule normalI, rule genby_Group)
show "∀x∈G. ∀h∈⟨⋃g∈G. lconjby g ` A⟩.
∃h'∈⟨⋃g∈G. lconjby g ` A⟩. x + h = h' + x"
proof
fix x assume x: "x∈G"
show "∀h∈⟨⋃g∈G. lconjby g ` A⟩.
∃h'∈⟨⋃g∈G. lconjby g ` A⟩. x + h = h' + x"
proof (rule ballI, erule genby.induct)
show "∃h∈⟨⋃g∈G. lconjby g ` A⟩. x + 0 = h + x"
using genby_0_closed by force
next
fix s assume "s ∈ (⋃g∈G. lconjby g ` A)"
from this obtain g a where ga: "g∈G" "a∈A" "s = lconjby g a" by fast
from ga(3) have "x + s = lconjby x (lconjby g a) + x"
by (simp add: algebra_simps)
hence "x + s = lconjby (x+g) a + x" by (simp add: lconjby_add)
with x ga(1,2) show "∃h∈⟨⋃g∈G. lconjby g ` A⟩. x + s = h + x"
using add_closed by (blast intro: genby_genset_closed)
next
fix w w'
assume w : "w ∈ ⟨⋃g∈G. lconjby g ` A⟩"
"∃h ∈⟨⋃g∈G. lconjby g ` A⟩. x + w = h + x"
and w': "w'∈ ⟨⋃g∈G. lconjby g ` A⟩"
"∃h'∈⟨⋃g∈G. lconjby g ` A⟩. x + w' = h'+ x"
from w(2) w'(2) obtain h h'
where h : "h ∈ ⟨⋃g∈G. lconjby g ` A⟩" "x + w = h + x"
and h': "h'∈ ⟨⋃g∈G. lconjby g ` A⟩" "x + w' = h'+ x"
by fast
have "x + (w - w') = x + w - (-x + (x + w'))"
by (simp add: algebra_simps)
also from h(2) h'(2) have "… = h + x + (-(h' + x) + x)"
by (simp add: algebra_simps)
also have "… = h + x + (-x + -h') + x"
by (simp add: minus_add add.assoc)
finally have "x + (w-w') = h - h' + x"
using add.assoc[of "h+x" "-x" "-h'"] by simp
with h(1) h'(1)
show "∃h∈⟨⋃g∈G. lconjby g ` A⟩. x + (w - w') = h + x"
using genby_diff_closed
by fast
qed
qed
show "∀x∈G. ∀h∈⟨⋃g∈G. lconjby g ` A⟩.
∃h'∈⟨⋃g∈G. lconjby g ` A⟩. h + x = x + h'"
proof
fix x assume x: "x∈G"
show "∀h∈⟨⋃g∈G. lconjby g ` A⟩.
∃h'∈⟨⋃g∈G. lconjby g ` A⟩. h + x = x + h'"
proof (rule ballI, erule genby.induct)
show "∃h∈⟨⋃g∈G. lconjby g ` A⟩. 0 + x = x + h"
using genby_0_closed by force
next
fix s assume "s ∈ (⋃g∈G. lconjby g ` A)"
from this obtain g a where ga: "g∈G" "a∈A" "s = lconjby g a" by fast
from ga(3) have "s + x = x + (((-x + g) + a) + -g) + x"
by (simp add: algebra_simps)
also have "… = x + (-x + g + a + -g + x)" by (simp add: add.assoc)
finally have "s + x = x + lconjby (-x+g) a"
by (simp add: algebra_simps lconjby_add)
with x ga(1,2) show "∃h∈⟨⋃g∈G. lconjby g ` A⟩. s + x = x + h"
using uminus_add_closed by (blast intro: genby_genset_closed)
next
fix w w'
assume w : "w ∈ ⟨⋃g∈G. lconjby g ` A⟩"
"∃h ∈⟨⋃g∈G. lconjby g ` A⟩. w + x = x + h"
and w': "w'∈ ⟨⋃g∈G. lconjby g ` A⟩"
"∃h'∈⟨⋃g∈G. lconjby g ` A⟩. w' + x = x + h'"
from w(2) w'(2) obtain h h'
where h : "h ∈ ⟨⋃g∈G. lconjby g ` A⟩" "w + x = x + h"
and h': "h'∈ ⟨⋃g∈G. lconjby g ` A⟩" "w' + x = x + h'"
by fast
have "w - w' + x = w + x + (-x + -w') + x" by (simp add: algebra_simps)
also from h(2) h'(2) have "… = x + h + (-h'+-x) + x"
using minus_add[of w' x] minus_add[of x h'] by simp
finally have "w - w' + x = x + (h - h')" by (simp add: algebra_simps)
with h(1) h'(1) show "∃h∈⟨⋃g∈G. lconjby g ` A⟩. w - w' + x = x + h"
using genby_diff_closed by fast
qed
qed
qed
end
subsubsection ‹Quotient groups›
text ‹
Here we use the bridge built by @{const BinOpSetGroup} to make the quotient of a @{const Group}
by a normal subgroup into a @{const Group} itself.
›
context Group
begin
lemma normal_quotient_add_well_defined:
assumes "Subgroup H" "normal H" "g∈G" "g'∈G"
shows "LCoset_rel H `` {g} + LCoset_rel H `` {g'} = LCoset_rel H `` {g+g'}"
proof (rule seteqI)
fix x assume "x ∈ LCoset_rel H `` {g} + LCoset_rel H `` {g'}"
from this obtain y z
where "y ∈ LCoset_rel H `` {g}" "z ∈ LCoset_rel H `` {g'}" "x = y+z"
unfolding set_plus_def
by fast
with assms show "x ∈ LCoset_rel H `` {g + g'}"
using lcoset_rel_def[of H] normal_lconjby_closed[of H g' "-g'+z"]
Group.add_closed
normal_rconjby_closed[of H g' "-g + y + (z - g')"]
add.assoc[of "-g'" "-g"]
add_closed lcoset_relI[of "g+g'" "y+z"]
by (fastforce simp add: add.assoc minus_add)
next
fix x assume "x ∈ LCoset_rel H `` {g + g'}"
moreover define h where "h ≡ -(g+g') + x"
moreover hence "x = g + (g' + h)"
using add.assoc[of "-g'" "-g" x] by (simp add: add.assoc minus_add)
ultimately show "x ∈ LCoset_rel H `` {g} + LCoset_rel H `` {g'}"
using assms(1,3,4) lcoset_rel_def[of H] add_closed
refl_onD[OF subgroup_refl_on_LCoset_rel, of H]
by force
qed
abbreviation "quotient_set H ≡ G // LCoset_rel H"
lemma BinOpSetGroup_normal_quotient:
assumes "Subgroup H" "normal H"
shows "BinOpSetGroup (quotient_set H) (+) H"
proof
from assms(1) have H0: "H = LCoset_rel H `` {0}"
using trivial_LCoset by auto
from assms(1) show "H ∈ quotient_set H"
using H0 zero_closed LCoset_rel_quotientI[of 0 H] by simp
fix x assume "x ∈ quotient_set H"
from this obtain gx where gx: "gx∈G" "x = LCoset_rel H `` {gx}"
by (fast elim: LCoset_rel_quotientE)
with assms(1,2) show "x+H = x" "H+x = x"
using normal_quotient_add_well_defined[of H gx 0]
normal_quotient_add_well_defined[of H 0 gx]
H0 zero_closed
by auto
from gx(1) have "LCoset_rel H `` {-gx} ∈ quotient_set H"
using uminus_closed by (fast intro: LCoset_rel_quotientI)
moreover from assms(1,2) gx
have "x + LCoset_rel H `` {-gx} = H" "LCoset_rel H `` {-gx} + x = H"
using H0 uminus_closed normal_quotient_add_well_defined
by auto
ultimately show "∃x'∈quotient_set H. x + x' = H ∧ x' + x = H" by fast
fix y assume "y ∈ quotient_set H"
from this obtain gy where gy: "gy∈G" "y = LCoset_rel H `` {gy}"
by (fast elim: LCoset_rel_quotientE)
with assms gx show "x+y ∈ quotient_set H"
using add_closed normal_quotient_add_well_defined
by (auto intro: LCoset_rel_quotientI)
qed (rule add.assoc)
abbreviation "abs_lcoset_perm H ≡
BinOpSetGroup.Abs_G_perm (quotient_set H) (+)"
abbreviation "abs_lcoset_perm_lift H g ≡ abs_lcoset_perm H (LCoset_rel H `` {g})"
abbreviation "abs_lcoset_perm_lift_arg_permutation g H ≡ abs_lcoset_perm_lift H g"
notation abs_lcoset_perm_lift_arg_permutation ("⌈_|_⌉" [51,51] 50)
end
abbreviation "Group_abs_lcoset_perm_lift_arg_permutation G' g H ≡
Group.abs_lcoset_perm_lift_arg_permutation G' g H"
notation Group_abs_lcoset_perm_lift_arg_permutation ("⌈_|_|_⌉" [51,51,51] 50)
context Group
begin
lemmas lcoset_perm_def =
BinOpSetGroup.Abs_G_perm_def[OF BinOpSetGroup_normal_quotient]
lemmas lcoset_perm_comp =
BinOpSetGroup.G_perm_comp[OF BinOpSetGroup_normal_quotient]
lemmas bij_lcoset_perm =
BinOpSetGroup.bij_G_perm[OF BinOpSetGroup_normal_quotient]
lemma trivial_lcoset_perm:
assumes "Subgroup H" "normal H" "h∈H"
shows "restrict1 ((+) (LCoset_rel H `` {h})) (quotient_set H) = id"
proof (rule ext, simp, rule impI)
fix x assume x: "x ∈ quotient_set H"
then obtain k where k: "k∈G" "x = LCoset_rel H `` {k}"
by (blast elim: LCoset_rel_quotientE)
with x have "LCoset_rel H `` {h} + x = LCoset_rel H `` {h+k}"
using assms normal_quotient_add_well_defined by auto
with assms k show "LCoset_rel H `` {h} + x = x"
using add_closed[of h k] lcoset_relI[of k "h+k" H]
normal_rconjby_closed[of H k h]
eq_equiv_class_iff[OF lcoset_subgroup_rel_equiv, of H]
by (auto simp add: add.assoc)
qed
definition quotient_group :: "'g set ⇒ 'g set permutation set" where
"quotient_group H ≡ BinOpSetGroup.pG (quotient_set H) (+)"
abbreviation "natural_quotient_hom H ≡ restrict0 (λg. ⌈g|H⌉) G"
theorem quotient_group:
"Subgroup H ⟹ normal H ⟹ Group (quotient_group H)"
unfolding quotient_group_def
using BinOpSetGroup.Group[OF BinOpSetGroup_normal_quotient]
by auto
lemma natural_quotient_hom:
"Subgroup H ⟹ normal H ⟹ GroupHom G (natural_quotient_hom H)"
using add_closed bij_lcoset_perm lcoset_perm_def supp_restrict0
normal_quotient_add_well_defined[THEN sym]
LCoset_rel_quotientI[of _ H]
by unfold_locales
(force simp add: lcoset_perm_comp plus_permutation_abs_eq)
lemma natural_quotient_hom_image:
"natural_quotient_hom H ` G = quotient_group H"
unfolding quotient_group_def
by (force elim: LCoset_rel_quotientE intro: LCoset_rel_quotientI)
lemma quotient_group_UN: "quotient_group H = (λg. ⌈g|H⌉) ` G"
using natural_quotient_hom_image by auto
lemma quotient_identity_rule: "⟦ Subgroup H; normal H; h∈H ⟧ ⟹ ⌈h|H⌉ = 0"
using lcoset_perm_def
by (simp add: trivial_lcoset_perm zero_permutation.abs_eq)
lemma quotient_group_lift_to_quotient_set:
"⟦ Subgroup H; normal H; g∈G ⟧ ⟹ (⌈g|H⌉) → H = LCoset_rel H `` {g}"
using LCoset_rel_quotientI
BinOpSetGroup.G_perm_apply_identity[
OF BinOpSetGroup_normal_quotient
]
by simp
end
subsubsection ‹The induced homomorphism on a quotient group›
text ‹
A normal subgroup contained in the kernel of a homomorphism gives rise to a homomorphism on the
quotient group by that subgroup. When the subgroup is the kernel itself (which is always normal),
we obtain an isomorphism on the quotient.
›
context GroupHom
begin
lemma respects_Ker_lcosets: "H ⊆ Ker ⟹ T respects (LCoset_rel H)"
using uminus_add_in_Ker_eq_eq_im
unfolding lcoset_rel_def
by (blast intro: congruentI)
abbreviation "quotient_hom H ≡
BinOpSetGroup.lift_hom (quotient_set H) (+) (quotientfun T)"
lemmas normal_subgroup_quotientfun_classrep_equality =
quotientfun_classrep_equality[
OF subgroup_refl_on_LCoset_rel, OF _ respects_Ker_lcosets
]
lemma quotient_hom_im:
"⟦ Subgroup H; normal H; H ⊆ Ker; g∈G ⟧ ⟹ quotient_hom H (⌈g|H⌉) = T g"
using quotient_group_def quotient_group_UN quotient_group_lift_to_quotient_set
BinOpSetGroup.inv_correspondence_conv_apply[
OF BinOpSetGroup_normal_quotient
]
normal_subgroup_quotientfun_classrep_equality
by auto
lemma quotient_hom:
assumes "Subgroup H" "normal H" "H ⊆ Ker"
shows "GroupHom (quotient_group H) (quotient_hom H)"
unfolding quotient_group_def
proof (
rule BinOpSetGroup.lift_hom, rule BinOpSetGroup_normal_quotient, rule assms(1),
rule assms(2)
)
from assms
show "∀x ∈ quotient_set H. ∀y ∈ quotient_set H.
quotientfun T (x + y) = quotientfun T x + quotientfun T y"
using normal_quotient_add_well_defined normal_subgroup_quotientfun_classrep_equality
add_closed hom
by (fastforce elim: LCoset_rel_quotientE)
qed
end
subsection ‹Free groups›
subsubsection ‹Words in letters of @{type signed} type›
paragraph ‹Definitions and basic fact›
text ‹
We pair elements of some type with type @{typ bool}, where the @{typ bool} part of the pair
indicates inversion.
›
abbreviation "pairtrue ≡ λs. (s,True)"
abbreviation "pairfalse ≡ λs. (s,False)"
abbreviation flip_signed :: "'a signed ⇒ 'a signed"
where "flip_signed ≡ apsnd (λb. ¬b)"
abbreviation nflipped_signed :: "'a signed ⇒ 'a signed ⇒ bool"
where "nflipped_signed x y ≡ y ≠ flip_signed x"
lemma flip_signed_order2: "flip_signed (flip_signed x) = x"
using apsnd_conv[of "λb. ¬b" "fst x" "snd x"] by simp
abbreviation charpair :: "'a::uminus set ⇒ 'a ⇒ 'a signed"
where "charpair S s ≡ if s∈S then (s,True) else (-s,False)"
lemma map_charpair_uniform:
"ss∈lists S ⟹ map (charpair S) ss = map pairtrue ss"
by (induct ss) auto
lemma fst_set_map_charpair_un_uminus:
fixes ss :: "'a::group_add list"
shows "ss∈lists (S ∪ uminus ` S) ⟹ fst ` set (map (charpair S) ss) ⊆ S"
by (induct ss) auto
abbreviation apply_sign :: "('a⇒'b::uminus) ⇒ 'a signed ⇒ 'b"
where "apply_sign f x ≡ (if snd x then f (fst x) else - f (fst x))"
text ‹
A word in such pairs will be considered proper if it does not contain consecutive letters that
have opposite signs (and so are considered inverse), since such consecutive letters would be
cancelled in a group.
›
abbreviation proper_signed_list :: "'a signed list ⇒ bool"
where "proper_signed_list ≡ binrelchain nflipped_signed"
lemma proper_map_flip_signed:
"proper_signed_list xs ⟹ proper_signed_list (map flip_signed xs)"
by (induct xs rule: list_induct_CCons) auto
lemma proper_rev_map_flip_signed:
"proper_signed_list xs ⟹ proper_signed_list (rev (map flip_signed xs))"
using proper_map_flip_signed binrelchain_sym_rev[of nflipped_signed] by fastforce
lemma uniform_snd_imp_proper_signed_list:
"snd ` set xs ⊆ {b} ⟹ proper_signed_list xs"
proof (induct xs rule: list_induct_CCons)
case CCons thus ?case by force
qed auto
lemma proper_signed_list_map_uniform_snd:
"proper_signed_list (map (λs. (s,b)) as)"
using uniform_snd_imp_proper_signed_list[of _ b] by force
paragraph ‹Algebra›
text ‹
Addition is performed by appending words and recursively removing any newly created adjacent
pairs of inverse letters. Since we will only ever be adding proper words, we only need to care
about newly created adjacent inverse pairs in the middle.
›
function prappend_signed_list :: "'a signed list ⇒ 'a signed list ⇒ 'a signed list"
where "prappend_signed_list xs [] = xs"
| "prappend_signed_list [] ys = ys"
| "prappend_signed_list (xs@[x]) (y#ys) = (
if y = flip_signed x then prappend_signed_list xs ys else xs @ x # y # ys
)"
by (auto) (rule two_prod_lists_cases_snoc_Cons)
termination by (relation "measure (λ(xs,ys). length xs + length ys)") auto
lemma proper_prappend_signed_list:
"proper_signed_list xs ⟹ proper_signed_list ys
⟹ proper_signed_list (prappend_signed_list xs ys)"
proof (induct xs ys rule: list_induct2_snoc_Cons)
case (snoc_Cons xs x y ys)
show ?case
proof (cases "y = flip_signed x")
case True with snoc_Cons show ?thesis
using binrelchain_append_reduce1[of nflipped_signed]
binrelchain_Cons_reduce[of nflipped_signed y]
by auto
next
case False with snoc_Cons(2,3) show ?thesis
using binrelchain_join[of nflipped_signed] by simp
qed
qed auto
lemma fully_prappend_signed_list:
"prappend_signed_list (rev (map flip_signed xs)) xs = []"
by (induct xs) auto
lemma prappend_signed_list_single_Cons:
"prappend_signed_list [x] (y#ys) = (if y = flip_signed x then ys else x#y#ys)"
using prappend_signed_list.simps(3)[of "[]" x] by simp
lemma prappend_signed_list_map_uniform_snd:
"prappend_signed_list (map (λs. (s,b)) xs) (map (λs. (s,b)) ys) =
map (λs. (s,b)) xs @ map (λs. (s,b)) ys"
by (cases xs ys rule: two_lists_cases_snoc_Cons) auto
lemma prappend_signed_list_assoc_conv_snoc2Cons:
assumes "proper_signed_list (xs@[y])" "proper_signed_list (y#ys)"
shows "prappend_signed_list (xs@[y]) ys = prappend_signed_list xs (y#ys)"
proof (cases xs ys rule: two_lists_cases_snoc_Cons')
case Nil1 with assms(2) show ?thesis
by (simp add: prappend_signed_list_single_Cons)
next
case Nil2 with assms(1) show ?thesis
using binrelchain_append_reduce2 by force
next
case (snoc_Cons as a b bs)
with assms show ?thesis
using prappend_signed_list.simps(3)[of "as@[a]"]
binrelchain_append_reduce2[of nflipped_signed as "[a,y]"]
by simp
qed simp
lemma prappend_signed_list_assoc:
"⟦ proper_signed_list xs; proper_signed_list ys; proper_signed_list zs ⟧ ⟹
prappend_signed_list (prappend_signed_list xs ys) zs =
prappend_signed_list xs (prappend_signed_list ys zs)"
proof (induct xs ys zs rule: list_induct3_snoc_Conssnoc_Cons_pairwise)
case (snoc_single_Cons xs x y z zs)
thus ?case
using prappend_signed_list.simps(3)[of "[]" y]
prappend_signed_list.simps(3)[of "xs@[x]"]
by (cases "y = flip_signed x" "z = flip_signed y" rule: two_cases)
(auto simp add:
flip_signed_order2 prappend_signed_list_assoc_conv_snoc2Cons
)
next
case (snoc_Conssnoc_Cons xs x y ys w z zs)
thus ?case
using binrelchain_Cons_reduce[of nflipped_signed y "ys@[w]"]
binrelchain_Cons_reduce[of nflipped_signed z zs]
binrelchain_append_reduce1[of nflipped_signed xs]
binrelchain_append_reduce1[of nflipped_signed "y#ys"]
binrelchain_Conssnoc_reduce[of nflipped_signed y ys]
prappend_signed_list.simps(3)[of "y#ys"]
prappend_signed_list.simps(3)[of "xs@x#y#ys"]
by (cases "y = flip_signed x" "z = flip_signed w" rule: two_cases) auto
qed auto
lemma fst_set_prappend_signed_list:
"fst ` set (prappend_signed_list xs ys) ⊆ fst ` (set xs ∪ set ys)"
by (induct xs ys rule: list_induct2_snoc_Cons) auto
lemma collapse_flipped_signed:
"prappend_signed_list [(s,b)] [(s,¬b)] = []"
using prappend_signed_list.simps(3)[of "[]" "(s,b)"] by simp
subsubsection ‹The collection of proper signed lists as a type›
text ‹
Here we create a type out of the collection of proper signed lists. This type will be of class
@{class group_add}, with the empty list as zero, the modified append operation
@{const prappend_signed_list} as addition, and inversion performed by flipping the signs of the
elements in the list and then reversing the order.
›
paragraph ‹Type definition, instantiations, and instances›
text ‹Here we define the type and instantiate it with respect to various type classes.›
typedef 'a freeword = "{as::'a signed list. proper_signed_list as}"
morphisms freeword Abs_freeword
using binrelchain.simps(1) by fast
text ‹
These two functions act as the natural injections of letters and words in the letter type into
the @{type freeword} type.
›
abbreviation Abs_freeletter :: "'a ⇒ 'a freeword"
where "Abs_freeletter s ≡ Abs_freeword [pairtrue s]"
abbreviation Abs_freelist :: "'a list ⇒ 'a freeword"
where "Abs_freelist as ≡ Abs_freeword (map pairtrue as)"
abbreviation Abs_freelistfst :: "'a signed list ⇒ 'a freeword"
where "Abs_freelistfst xs ≡ Abs_freelist (map fst xs)"
setup_lifting type_definition_freeword
instantiation freeword :: (type) zero
begin
lift_definition zero_freeword :: "'a freeword" is "[]::'a signed list" by simp
instance ..
end
instantiation freeword :: (type) plus
begin
lift_definition plus_freeword :: "'a freeword ⇒ 'a freeword ⇒ 'a freeword"
is "prappend_signed_list"
using proper_prappend_signed_list
by fast
instance ..
end
instantiation freeword :: (type) uminus
begin
lift_definition uminus_freeword :: "'a freeword ⇒ 'a freeword"
is "λxs. rev (map flip_signed xs)"
by (rule proper_rev_map_flip_signed)
instance ..
end
instantiation freeword :: (type) minus
begin
lift_definition minus_freeword :: "'a freeword ⇒ 'a freeword ⇒ 'a freeword"
is "λxs ys. prappend_signed_list xs (rev (map flip_signed ys))"
using proper_rev_map_flip_signed proper_prappend_signed_list by fast
instance ..
end
instance freeword :: (type) semigroup_add
proof
fix a b c :: "'a freeword" show "a + b + c = a + (b + c)"
using prappend_signed_list_assoc[of "freeword a" "freeword b" "freeword c"]
by transfer simp
qed
instance freeword :: (type) monoid_add
proof
fix a b c :: "'a freeword"
show "0 + a = a" by transfer simp
show "a + 0 = a" by transfer simp
qed
instance freeword :: (type) group_add
proof
fix a b :: "'a freeword"
show "- a + a = 0"
using fully_prappend_signed_list[of "freeword a"] by transfer simp
show "a + - b = a - b" by transfer simp
qed
paragraph ‹Basic algebra and transfer facts in the @{type freeword} type›
text ‹
Here we record basic algebraic manipulations for the @{type freeword} type as well as various
transfer facts for dealing with representations of elements of @{type freeword} type as lists of
signed letters.
›
abbreviation Abs_freeletter_add :: "'a ⇒ 'a ⇒ 'a freeword" (infixl "[+]" 65)
where "s [+] t ≡ Abs_freeletter s + Abs_freeletter t"
lemma Abs_freeword_Cons:
assumes "proper_signed_list (x#xs)"
shows "Abs_freeword (x#xs) = Abs_freeword [x] + Abs_freeword xs"
proof (cases xs)
case Nil thus ?thesis
using add_0_right[of "Abs_freeword [x]"] by (simp add: zero_freeword.abs_eq)
next
case (Cons y ys)
with assms
have "freeword (Abs_freeword (x#xs)) =
freeword (Abs_freeword [x] + Abs_freeword xs)"
by (simp add:
plus_freeword.rep_eq Abs_freeword_inverse
prappend_signed_list_single_Cons
)
thus ?thesis using freeword_inject by fast
qed
lemma Abs_freelist_Cons: "Abs_freelist (x#xs) = Abs_freeletter x + Abs_freelist xs"
using proper_signed_list_map_uniform_snd[of True "x#xs"] Abs_freeword_Cons
by simp
lemma plus_freeword_abs_eq:
"proper_signed_list xs ⟹ proper_signed_list ys ⟹
Abs_freeword xs + Abs_freeword ys = Abs_freeword (prappend_signed_list xs ys)"
using plus_freeword.abs_eq unfolding eq_onp_def by simp
lemma Abs_freeletter_add: "s [+] t = Abs_freelist [s,t]"
using Abs_freelist_Cons[of s "[t]"] by simp
lemma uminus_freeword_Abs_eq:
"proper_signed_list xs ⟹
- Abs_freeword xs = Abs_freeword (rev (map flip_signed xs))"
using uminus_freeword.abs_eq unfolding eq_onp_def by simp
lemma uminus_Abs_freeword_singleton:
"- Abs_freeword [(s,b)] = Abs_freeword [(s,¬ b)]"
using uminus_freeword_Abs_eq[of "[(s,b)]"] by simp
lemma Abs_freeword_append_uniform_snd:
"Abs_freeword (map (λs. (s,b)) (xs@ys)) =
Abs_freeword (map (λs. (s,b)) xs) + Abs_freeword (map (λs. (s,b)) ys)"
using proper_signed_list_map_uniform_snd[of b xs]
proper_signed_list_map_uniform_snd[of b ys]
plus_freeword_abs_eq prappend_signed_list_map_uniform_snd[of b xs ys]
by force
lemmas Abs_freelist_append = Abs_freeword_append_uniform_snd[of True]
lemma Abs_freelist_append_append:
"Abs_freelist (xs@ys@zs) = Abs_freelist xs + Abs_freelist ys + Abs_freelist zs"
using Abs_freelist_append[of "xs@ys"] Abs_freelist_append by simp
lemma Abs_freelist_inverse: "freeword (Abs_freelist as) = map pairtrue as"
using proper_signed_list_map_uniform_snd Abs_freeword_inverse by fast
lemma Abs_freeword_singleton_conv_apply_sign_freeletter:
"Abs_freeword [x] = apply_sign Abs_freeletter x"
by (cases x) (auto simp add: uminus_Abs_freeword_singleton)
lemma Abs_freeword_conv_freeletter_sum_list:
"proper_signed_list xs ⟹
Abs_freeword xs = (∑x←xs. apply_sign Abs_freeletter x)"
proof (induct xs)
case (Cons x xs) thus ?case
using Abs_freeword_Cons[of x] binrelchain_Cons_reduce[of _ x]
by (simp add: Abs_freeword_singleton_conv_apply_sign_freeletter)
qed (simp add: zero_freeword.abs_eq)
lemma freeword_conv_freeletter_sum_list:
"x = (∑s←freeword x. apply_sign Abs_freeletter s)"
using Abs_freeword_conv_freeletter_sum_list[of "freeword x"] freeword
by (auto simp add: freeword_inverse)
lemma Abs_freeletter_prod_conv_Abs_freeword:
"snd x ⟹ Abs_freeletter (fst x) = Abs_freeword [x]"
using prod_eqI[of x "pairtrue (fst x)"] by simp
subsubsection ‹Lifts of functions on the letter type›
text ‹
Here we lift functions on the letter type to type @{type freeword}. In particular, we are
interested in the case where the function being lifted has codomain of class @{class group_add}.
›
paragraph ‹The universal property›
text ‹
The universal property for free groups says that every function from the letter type to some
@{class group_add} type gives rise to a unique homomorphism.
›
lemma extend_map_to_freeword_hom':
fixes f :: "'a ⇒ 'b::group_add"
defines h: "h::'a signed ⇒ 'b ≡ λ(s,b). if b then f s else - (f s)"
defines g: "g::'a signed list ⇒ 'b ≡ λxs. sum_list (map h xs)"
shows "g (prappend_signed_list xs ys) = g xs + g ys"
proof (induct xs ys rule: list_induct2_snoc_Cons)
case (snoc_Cons xs x y ys)
show ?case
proof (cases "y = flip_signed x")
case True
with h have "h y = - h x"
using split_beta'[of "λs b. if b then f s else - (f s)"] by simp
with g have "g (xs @ [x]) + g (y # ys) = g xs + g ys"
by (simp add: algebra_simps)
with True snoc_Cons show ?thesis by simp
next
case False with g show ?thesis
using sum_list.append[of "map h (xs@[x])" "map h (y#ys)"] by simp
qed
qed (auto simp add: h g)
lemma extend_map_to_freeword_hom1:
fixes f :: "'a ⇒ 'b::group_add"
defines "h::'a signed ⇒ 'b ≡ λ(s,b). if b then f s else - (f s)"
defines "g::'a freeword ⇒ 'b ≡ λx. sum_list (map h (freeword x))"
shows "g (Abs_freeletter s) = f s"
using assms
by (simp add: Abs_freeword_inverse)
lemma extend_map_to_freeword_hom2:
fixes f :: "'a ⇒ 'b::group_add"
defines "h::'a signed ⇒ 'b ≡ λ(s,b). if b then f s else - (f s)"
defines "g::'a freeword ⇒ 'b ≡ λx. sum_list (map h (freeword x))"
shows "UGroupHom g"
using assms
by (
auto intro: UGroupHomI
simp add: plus_freeword.rep_eq extend_map_to_freeword_hom'
)
lemma uniqueness_of_extended_map_to_freeword_hom':
fixes f :: "'a ⇒ 'b::group_add"
defines h: "h::'a signed ⇒ 'b ≡ λ(s,b). if b then f s else - (f s)"
defines g: "g::'a signed list ⇒ 'b ≡ λxs. sum_list (map h xs)"
assumes singles: "⋀s. k [(s,True)] = f s"
and adds : "⋀xs ys. proper_signed_list xs ⟹ proper_signed_list ys
⟹ k (prappend_signed_list xs ys) = k xs + k ys"
shows "proper_signed_list xs ⟹ k xs = g xs"
proof-
have knil: "k [] = 0" using adds[of "[]" "[]"] add.assoc[of "k []" "k []" "- k []"] by simp
have ksingle: "⋀x. k [x] = g [x]"
proof-
fix x :: "'a signed"
obtain s b where x: "x = (s,b)" by fastforce
show "k [x] = g [x]"
proof (cases b)
case False
from adds x singles
have "k (prappend_signed_list [x] [(s,True)]) = k [x] + f s"
by simp
moreover have "prappend_signed_list [(s,False)] [(s,True)] = []"
using collapse_flipped_signed[of s False] by simp
ultimately have "- f s = k [x] + f s + - f s" using x False knil by simp
with x False g h show "k [x] = g [x]" by (simp add: algebra_simps)
qed (simp add: x g h singles)
qed
show "proper_signed_list xs ⟹ k xs = g xs"
proof (induct xs rule: list_induct_CCons)
case (CCons x y xs)
with g h show ?case
using adds[of "[x]" "y#xs"]
by (simp add:
prappend_signed_list_single_Cons
ksingle extend_map_to_freeword_hom'
)
qed (auto simp add: g h knil ksingle)
qed
lemma uniqueness_of_extended_map_to_freeword_hom:
fixes f :: "'a ⇒ 'b::group_add"
defines "h::'a signed ⇒ 'b ≡ λ(s,b). if b then f s else - (f s)"
defines "g::'a freeword ⇒ 'b ≡ λx. sum_list (map h (freeword x))"
assumes k: "k ∘ Abs_freeletter = f" "UGroupHom k"
shows "k = g"
proof
fix x::"'a freeword"
define k' where k': "k' ≡ k ∘ Abs_freeword"
have "k' (freeword x) = g x" unfolding h_def g_def
proof (rule uniqueness_of_extended_map_to_freeword_hom')
from k' k(1) show "⋀s. k' [pairtrue s] = f s" by auto
show "⋀xs ys. proper_signed_list xs ⟹ proper_signed_list ys
⟹ k' (prappend_signed_list xs ys) = k' xs + k' ys"
proof-
fix xs ys :: "'a signed list"
assume xsys: "proper_signed_list xs" "proper_signed_list ys"
with k'
show "k' (prappend_signed_list xs ys) = k' xs + k' ys"
using UGroupHom.hom[OF k(2), of "Abs_freeword xs" "Abs_freeword ys"]
by (simp add: plus_freeword_abs_eq)
qed
show "proper_signed_list (freeword x)" using freeword by fast
qed
with k' show "k x = g x" using freeword_inverse[of x] by simp
qed
theorem universal_property:
fixes f :: "'a ⇒ 'b::group_add"
shows "∃!g::'a freeword⇒'b. g ∘ Abs_freeletter = f ∧ UGroupHom g"
proof
define h where h: "h ≡ λ(s,b). if b then f s else - (f s)"
define g where g: "g ≡ λx. sum_list (map h (freeword x))"
from g h show "g ∘ Abs_freeletter = f ∧ UGroupHom g"
using extend_map_to_freeword_hom1[of f] extend_map_to_freeword_hom2
by auto
from g h show "⋀k. k ∘ Abs_freeletter = f ∧ UGroupHom k ⟹ k = g"
using uniqueness_of_extended_map_to_freeword_hom by auto
qed
paragraph ‹Properties of homomorphisms afforded by the universal property›
text ‹
The lift of a function on the letter set is the unique additive function on @{type freeword}
that agrees with the original function on letters.
›
definition freeword_funlift :: "('a ⇒ 'b::group_add) ⇒ ('a freeword⇒'b::group_add)"
where "freeword_funlift f ≡ (THE g. g ∘ Abs_freeletter = f ∧ UGroupHom g)"
lemma additive_freeword_funlift: "UGroupHom (freeword_funlift f)"
using theI'[OF universal_property, of f] unfolding freeword_funlift_def by simp
lemma freeword_funlift_Abs_freeletter: "freeword_funlift f (Abs_freeletter s) = f s"
using theI'[OF universal_property, of f]
comp_apply[of "freeword_funlift f" Abs_freeletter]
unfolding freeword_funlift_def
by fastforce
lemmas freeword_funlift_add = UGroupHom.hom [OF additive_freeword_funlift]
lemmas freeword_funlift_0 = UGroupHom.im_zero [OF additive_freeword_funlift]
lemmas freeword_funlift_uminus = UGroupHom.im_uminus [OF additive_freeword_funlift]
lemmas freeword_funlift_diff = UGroupHom.im_diff [OF additive_freeword_funlift]
lemmas freeword_funlift_lconjby = UGroupHom.im_lconjby [OF additive_freeword_funlift]
lemma freeword_funlift_uminus_Abs_freeletter:
"freeword_funlift f (Abs_freeword [(s,False)]) = - f s"
using freeword_funlift_uminus[of f "Abs_freeword [(s,False)]"]
uminus_freeword_Abs_eq[of "[(s,False)]"]
freeword_funlift_Abs_freeletter[of f]
by simp
lemma freeword_funlift_Abs_freeword_singleton:
"freeword_funlift f (Abs_freeword [x]) = apply_sign f x"
proof-
obtain s b where x: "x = (s,b)" by fastforce
thus ?thesis
using freeword_funlift_Abs_freeletter freeword_funlift_uminus_Abs_freeletter
by (cases b) auto
qed
lemma freeword_funlift_Abs_freeword_Cons:
assumes "proper_signed_list (x#xs)"
shows "freeword_funlift f (Abs_freeword (x#xs)) =
apply_sign f x + freeword_funlift f (Abs_freeword xs)"
proof-
from assms
have "freeword_funlift f (Abs_freeword (x#xs)) =
freeword_funlift f (Abs_freeword [x]) +
freeword_funlift f (Abs_freeword xs)"
using Abs_freeword_Cons[of x xs] freeword_funlift_add by simp
thus ?thesis
using freeword_funlift_Abs_freeword_singleton[of f x] by simp
qed
lemma freeword_funlift_Abs_freeword:
"proper_signed_list xs ⟹ freeword_funlift f (Abs_freeword xs) =
(∑x←xs. apply_sign f x)"
proof (induct xs)
case (Cons x xs) thus ?case
using freeword_funlift_Abs_freeword_Cons[of _ _ f]
binrelchain_Cons_reduce[of _ x xs]
by simp
qed (simp add: zero_freeword.abs_eq[THEN sym] freeword_funlift_0)
lemma freeword_funlift_Abs_freelist:
"freeword_funlift f (Abs_freelist xs) = (∑x←xs. f x)"
proof (induct xs)
case (Cons x xs) thus ?case
using Abs_freelist_Cons[of x xs]
by (simp add: freeword_funlift_add freeword_funlift_Abs_freeletter)
qed (simp add: zero_freeword.abs_eq[THEN sym] freeword_funlift_0)
lemma freeword_funlift_im':
"proper_signed_list xs ⟹ fst ` set xs ⊆ S ⟹
freeword_funlift f (Abs_freeword xs) ∈ ⟨f`S⟩"
proof (induct xs)
case Nil
have "Abs_freeword ([]::'a signed list) = (0::'a freeword)"
using zero_freeword.abs_eq[THEN sym] by simp
thus "freeword_funlift f (Abs_freeword ([]::'a signed list)) ∈ ⟨f`S⟩"
using freeword_funlift_0[of f] genby_0_closed by simp
next
case (Cons x xs)
define y where y: "y ≡ apply_sign f x"
define z where z: "z ≡ freeword_funlift f (Abs_freeword xs)"
from Cons(3) have "fst ` set xs ⊆ S" by simp
with z Cons(1,2) have "z ∈ ⟨f`S⟩" using binrelchain_Cons_reduce by fast
with y Cons(3) have "y + z ∈ ⟨f`S⟩"
using genby_genset_closed[of _ "f`S"]
genby_uminus_closed genby_add_closed[of y]
by fastforce
with Cons(2) y z show ?case
using freeword_funlift_Abs_freeword_Cons
subst[
OF sym,
of "freeword_funlift f (Abs_freeword (x#xs))" "y+z"
"λb. b∈⟨f`S⟩"
]
by fast
qed
subsubsection ‹Free groups on a set›
text ‹
We now take the free group on a set to be the set in the @{type freeword} type with letters
restricted to the given set.
›
paragraph ‹Definition and basic facts›
text ‹
Here we define the set of elements of the free group over a set of letters, and record basic
facts about that set.
›
definition FreeGroup :: "'a set ⇒ 'a freeword set"
where "FreeGroup S ≡ {x. fst ` set (freeword x) ⊆ S}"
lemma FreeGroupI_transfer:
"proper_signed_list xs ⟹ fst ` set xs ⊆ S ⟹ Abs_freeword xs ∈ FreeGroup S"
using Abs_freeword_inverse unfolding FreeGroup_def by fastforce
lemma FreeGroupD: "x ∈ FreeGroup S ⟹ fst ` set (freeword x) ⊆ S"
using FreeGroup_def by fast
lemma FreeGroupD_transfer:
"proper_signed_list xs ⟹ Abs_freeword xs ∈ FreeGroup S ⟹ fst ` set xs ⊆ S"
using Abs_freeword_inverse unfolding FreeGroup_def by fastforce
lemma FreeGroupD_transfer':
"Abs_freelist xs ∈ FreeGroup S ⟹ xs ∈ lists S"
using proper_signed_list_map_uniform_snd FreeGroupD_transfer by fastforce
lemma FreeGroup_0_closed: "0 ∈ FreeGroup S"
proof-
have "(0::'a freeword) = Abs_freeword []" using zero_freeword.abs_eq by fast
moreover have "Abs_freeword [] ∈ FreeGroup S"
using FreeGroupI_transfer[of "[]"] by simp
ultimately show ?thesis by simp
qed
lemma FreeGroup_diff_closed:
assumes "x ∈ FreeGroup S" "y ∈ FreeGroup S"
shows "x-y ∈ FreeGroup S"
proof-
define xs where xs: "xs ≡ freeword x"
define ys where ys: "ys ≡ freeword y"
have "freeword (x-y) =
prappend_signed_list (freeword x) (rev (map flip_signed (freeword y)))"
by transfer simp
hence "fst ` set (freeword (x-y)) ⊆ fst ` (set (freeword x) ∪ set (freeword y))"
using fst_set_prappend_signed_list by force
with assms show ?thesis unfolding FreeGroup_def by fast
qed
lemma FreeGroup_Group: "Group (FreeGroup S)"
using FreeGroup_0_closed FreeGroup_diff_closed by unfold_locales fast
lemmas FreeGroup_add_closed = Group.add_closed [OF FreeGroup_Group]
lemmas FreeGroup_uminus_closed = Group.uminus_closed [OF FreeGroup_Group]
lemmas FreeGroup_genby_set_lconjby_set_rconjby_closed =
Group.genby_set_lconjby_set_rconjby_closed[OF FreeGroup_Group]
lemma Abs_freelist_in_FreeGroup: "ss ∈ lists S ⟹ Abs_freelist ss ∈ FreeGroup S"
using proper_signed_list_map_uniform_snd by (fastforce intro: FreeGroupI_transfer)
lemma Abs_freeletter_in_FreeGroup_iff: "(Abs_freeletter s ∈ FreeGroup S) = (s∈S)"
using Abs_freeword_inverse[of "[pairtrue s]"] unfolding FreeGroup_def by simp
paragraph ‹Lifts of functions from the letter set to some type of class @{class group_add}›
text ‹
We again obtain a universal property for functions from the (restricted) letter set to some type
of class @{class group_add}.
›
abbreviation "res_freeword_funlift f S ≡
restrict0 (freeword_funlift f) (FreeGroup S)"
lemma freeword_funlift_im: "x ∈ FreeGroup S ⟹ freeword_funlift f x ∈ ⟨f ` S⟩"
using freeword[of x] freeword_funlift_im'[of "freeword x"]
freeword_inverse[of x]
unfolding FreeGroup_def
by auto
lemma freeword_funlift_surj':
"ys ∈ lists (f`S ∪ uminus`f`S) ⟹ sum_list ys ∈ freeword_funlift f ` FreeGroup S"
proof (induct ys)
case Nil thus ?case using FreeGroup_0_closed freeword_funlift_0 by fastforce
next
case (Cons y ys)
from this obtain x
where x: "x ∈ FreeGroup S" "sum_list ys = freeword_funlift f x"
by auto
show "sum_list (y#ys) ∈ freeword_funlift f ` FreeGroup S"
proof (cases "y ∈ f`S")
case True
from this obtain s where s: "s∈S" "y = f s" by fast
from s(1) x(1) have "Abs_freeletter s + x ∈ FreeGroup S"
using FreeGroupI_transfer[of _ S] FreeGroup_add_closed[of _ S] by force
moreover from s(2) x(2)
have "freeword_funlift f (Abs_freeletter s + x) = sum_list (y#ys)"
using freeword_funlift_add[of f] freeword_funlift_Abs_freeletter
by simp
ultimately show ?thesis by force
next
case False
with Cons(2) obtain s where s: "s∈S" "y = - f s" by auto
from s(1) x(1) have "Abs_freeword [(s,False)] + x ∈ FreeGroup S"
using FreeGroupI_transfer[of _ S] FreeGroup_add_closed[of _ S] by force
moreover from s(2) x(2)
have "freeword_funlift f (Abs_freeword [(s,False)] + x) = sum_list (y#ys)"
using freeword_funlift_add[of f] freeword_funlift_uminus_Abs_freeletter
by simp
ultimately show ?thesis by force
qed
qed
lemma freeword_funlift_surj:
fixes f :: "'a ⇒ 'b::group_add"
shows "freeword_funlift f ` FreeGroup S = ⟨f`S⟩"
proof (rule seteqI)
show "⋀a. a ∈ freeword_funlift f ` FreeGroup S ⟹ a ∈ ⟨f`S⟩"
using freeword_funlift_im by auto
next
fix w assume "w∈⟨f`S⟩"
from this obtain ys where ys: "ys ∈ lists (f`S ∪ uminus`f`S)" "w = sum_list ys"
using genby_eq_sum_lists[of "f`S"] by auto
thus "w ∈ freeword_funlift f ` FreeGroup S" using freeword_funlift_surj' by simp
qed
lemma hom_restrict0_freeword_funlift:
"GroupHom (FreeGroup S) (res_freeword_funlift f S)"
using UGroupHom.restrict0 additive_freeword_funlift FreeGroup_Group
by auto
lemma uniqueness_of_restricted_lift:
assumes "GroupHom (FreeGroup S) T" "∀s∈S. T (Abs_freeletter s) = f s"
shows "T = res_freeword_funlift f S"
proof
fix x
define F where "F ≡ res_freeword_funlift f S"
define u_Abs where "u_Abs ≡ λa::'a signed. apply_sign Abs_freeletter a"
show "T x = F x"
proof (cases "x ∈ FreeGroup S")
case True
have 1: "set (map u_Abs (freeword x)) ⊆ FreeGroup S"
using u_Abs_def FreeGroupD[OF True]
Abs_freeletter_in_FreeGroup_iff[of _ S]
FreeGroup_uminus_closed
by auto
moreover from u_Abs_def have "x = (∑a←freeword x. u_Abs a)"
using freeword_conv_freeletter_sum_list by fast
ultimately
have "T x = (∑a←freeword x. T (u_Abs a))"
"F x = (∑a←freeword x. F (u_Abs a))"
using F_def
GroupHom.im_sum_list_map[OF assms(1), of u_Abs "freeword x"]
GroupHom.im_sum_list_map[
OF hom_restrict0_freeword_funlift,
of u_Abs "freeword x" S f
]
by auto
moreover have "∀a∈set (freeword x). T (u_Abs a) = F (u_Abs a)"
proof
fix a assume "a ∈ set (freeword x)"
moreover define b where "b ≡ Abs_freeletter (fst a)"
ultimately show "T (u_Abs a) = F (u_Abs a)"
using F_def u_Abs_def True assms(2) FreeGroupD[of x S]
GroupHom.im_uminus[OF assms(1)]
Abs_freeletter_in_FreeGroup_iff[of "fst a" S]
GroupHom.im_uminus[OF hom_restrict0_freeword_funlift, of b S f]
freeword_funlift_Abs_freeletter[of f]
by auto
qed
ultimately show ?thesis
using F_def
sum_list_map_cong[of "freeword x" "λs. T (u_Abs s)" "λs. F (u_Abs s)"]
by simp
next
case False
with assms(1) F_def show ?thesis
using hom_restrict0_freeword_funlift GroupHom.supp suppI_contra[of x T]
suppI_contra[of x F]
by fastforce
qed
qed
theorem FreeGroup_universal_property:
fixes f :: "'a ⇒ 'b::group_add"
shows "∃!T::'a freeword⇒'b. (∀s∈S. T (Abs_freeletter s) = f s) ∧
GroupHom (FreeGroup S) T"
proof (rule ex1I, rule conjI)
show "∀s∈S. res_freeword_funlift f S (Abs_freeletter s) = f s"
using Abs_freeletter_in_FreeGroup_iff[of _ S] freeword_funlift_Abs_freeletter
by auto
show "⋀T. (∀s∈S. T (Abs_freeletter s) = f s) ∧
GroupHom (FreeGroup S) T ⟹
T = restrict0 (freeword_funlift f) (FreeGroup S)"
using uniqueness_of_restricted_lift by auto
qed (rule hom_restrict0_freeword_funlift)
subsubsection ‹Group presentations›
text ‹
We now define a group presentation to be the quotient of a free group by the subgroup generated by
all conjugates of a set of relators. We are most concerned with lifting functions on the letter
set to the free group and with the associated induced homomorphisms on the quotient.
›
paragraph ‹A first group presentation locale and basic facts›
text ‹
Here we define a locale that provides a way to construct a group by providing sets of generators
and relator words.
›
locale GroupByPresentation =
fixes S :: "'a set"
and P :: "'a signed list set"
assumes P_S: "ps∈P ⟹ fst ` set ps ⊆ S"
and proper_P: "ps∈P ⟹ proper_signed_list ps"
begin
abbreviation "P' ≡ Abs_freeword ` P"
abbreviation "Q ≡ Group.normal_closure (FreeGroup S) P'"
abbreviation "G ≡ Group.quotient_group (FreeGroup S) Q"
lemmas G_UN = Group.quotient_group_UN[OF FreeGroup_Group, of S Q]
lemma P'_FreeS: "P' ⊆ FreeGroup S"
using P_S proper_P by (blast intro: FreeGroupI_transfer)
lemma relators: "P' ⊆ Q"
using FreeGroup_0_closed genby_genset_subset by fastforce
lemmas lconjby_P'_FreeS =
Group.set_lconjby_subset_closed[
OF FreeGroup_Group _ P'_FreeS, OF basic_monos(1)
]
lemmas Q_FreeS =
Group.genby_closed[OF FreeGroup_Group lconjby_P'_FreeS]
lemmas Q_subgroup_FreeS =
Group.genby_subgroup[OF FreeGroup_Group lconjby_P'_FreeS]
lemmas normal_Q = Group.normal_closure[OF FreeGroup_Group, OF P'_FreeS]
lemmas natural_hom =
Group.natural_quotient_hom[
OF FreeGroup_Group Q_subgroup_FreeS normal_Q
]
lemmas natural_hom_image =
Group.natural_quotient_hom_image[OF FreeGroup_Group, of S Q]
end
paragraph ‹Functions on the quotient induced from lifted functions›
text ‹
A function on the generator set into a type of class @{class group_add} lifts to a unique
homomorphism on the free group. If this lift is trivial on relators, then it factors to a
homomorphism of the group described by the generators and relators.
›
locale GroupByPresentationInducedFun = GroupByPresentation S P
for S :: "'a set"
and P :: "'a signed list set"
+ fixes f :: "'a ⇒ 'b::group_add"
assumes lift_f_trivial_P:
"ps∈P ⟹ freeword_funlift f (Abs_freeword ps) = 0"
begin
abbreviation "lift_f ≡ freeword_funlift f"
definition induced_hom :: "'a freeword set permutation ⇒ 'b"
where "induced_hom ≡ GroupHom.quotient_hom (FreeGroup S)
(restrict0 lift_f (FreeGroup S)) Q"
abbreviation "F ≡ induced_hom"
lemma lift_f_trivial_P': "p∈P' ⟹ lift_f p = 0"
using lift_f_trivial_P by fast
lemma lift_f_trivial_lconjby_P': "p∈P' ⟹ lift_f (lconjby w p) = 0"
using freeword_funlift_lconjby[of f] lift_f_trivial_P' by simp
lemma lift_f_trivial_Q: "q∈Q ⟹ lift_f q = 0"
proof (erule genby.induct, rule freeword_funlift_0)
show "⋀s. s ∈ (⋃w ∈ FreeGroup S. lconjby w ` P') ⟹ lift_f s = 0"
using lift_f_trivial_lconjby_P' by fast
next
fix w w' :: "'a freeword" assume ww': "lift_f w = 0" "lift_f w' = 0"
have "lift_f (w - w') = lift_f w - lift_f w'"
using freeword_funlift_diff[of f w] by simp
with ww' show "lift_f (w-w') = 0" by simp
qed
lemma lift_f_ker_Q: "Q ⊆ ker lift_f"
using lift_f_trivial_Q unfolding ker_def by auto
lemma lift_f_Ker_Q: "Q ⊆ GroupHom.Ker (FreeGroup S) lift_f"
using lift_f_ker_Q Q_FreeS by fast
lemma restrict0_lift_f_Ker_Q:
"Q ⊆ GroupHom.Ker (FreeGroup S) (restrict0 lift_f (FreeGroup S))"
using lift_f_Ker_Q ker_subset_ker_restrict0 by fast
lemma induced_hom_equality:
"w ∈ FreeGroup S ⟹ F (⌈FreeGroup S|w|Q⌉) = lift_f w"
unfolding induced_hom_def
using GroupHom.quotient_hom_im hom_restrict0_freeword_funlift
Q_subgroup_FreeS normal_Q restrict0_lift_f_Ker_Q
by fastforce
lemma hom_induced_hom: "GroupHom G F"
unfolding induced_hom_def
using GroupHom.quotient_hom hom_restrict0_freeword_funlift
Q_subgroup_FreeS normal_Q restrict0_lift_f_Ker_Q
by fast
lemma induced_hom_Abs_freeletter_equality:
"s∈S ⟹ F (⌈FreeGroup S|Abs_freeletter s|Q⌉) = f s"
using Abs_freeletter_in_FreeGroup_iff[of s S]
by (simp add: induced_hom_equality freeword_funlift_Abs_freeletter)
lemma uniqueness_of_induced_hom':
defines "q ≡ Group.natural_quotient_hom (FreeGroup S) Q"
assumes "GroupHom G T" "∀s∈S. T (⌈FreeGroup S|Abs_freeletter s|Q⌉) = f s"
shows "T ∘ q = F ∘ q"
proof-
from assms have "T∘q = res_freeword_funlift f S"
using natural_hom natural_hom_image Abs_freeletter_in_FreeGroup_iff[of _ S]
by (force intro: uniqueness_of_restricted_lift GroupHom.comp)
moreover from q_def have "F ∘ q = res_freeword_funlift f S"
using induced_hom_equality GroupHom.im_zero[OF hom_induced_hom]
by auto
ultimately show ?thesis by simp
qed
lemma uniqueness_of_induced_hom:
assumes "GroupHom G T" "∀s∈S. T (⌈FreeGroup S|Abs_freeletter s|Q⌉) = f s"
shows "T = F"
proof
fix x
show "T x = F x"
proof (cases "x∈G")
case True
define q where "q ≡ Group.natural_quotient_hom (FreeGroup S) Q"
from True obtain w where "w ∈ FreeGroup S" "x = (⌈FreeGroup S|w|Q⌉)"
using G_UN by fast
with q_def have "T x = (T∘q) w" "F x = (F∘q) w" by auto
with assms q_def show ?thesis using uniqueness_of_induced_hom' by simp
next
case False
with assms(1) show ?thesis
using hom_induced_hom GroupHom.supp suppI_contra[of x T]
suppI_contra[of x F]
by fastforce
qed
qed
theorem induced_hom_universal_property:
"∃!F. GroupHom G F ∧ (∀s∈S. F (⌈FreeGroup S|Abs_freeletter s|Q⌉) = f s)"
using hom_induced_hom induced_hom_Abs_freeletter_equality
uniqueness_of_induced_hom
by blast
lemma induced_hom_Abs_freelist_conv_sum_list:
"ss∈lists S ⟹ F (⌈FreeGroup S|Abs_freelist ss|Q⌉) = (∑s←ss. f s)"
by (simp add:
Abs_freelist_in_FreeGroup induced_hom_equality freeword_funlift_Abs_freelist
)
lemma induced_hom_surj: "F`G = ⟨f`S⟩"
proof (rule seteqI)
show "⋀x. x∈F`G ⟹ x∈⟨f`S⟩"
using G_UN induced_hom_equality freeword_funlift_surj[of f S] by auto
next
fix x assume "x∈⟨f`S⟩"
hence "x ∈ lift_f ` FreeGroup S" using freeword_funlift_surj[of f S] by fast
thus "x ∈ F`G" using induced_hom_equality G_UN by force
qed
end
paragraph ‹Groups affording a presentation›
text ‹
The locale @{const GroupByPresentation} allows the construction of a @{const Group} out of any
type from a set of generating letters and a set of relator words in (signed) letters. The
following locale concerns the question of when the @{const Group} generated by a set in class
@{class group_add} is isomorphic to a group presentation.
›
locale GroupWithGeneratorsRelators =
fixes S :: "'g::group_add set"
and R :: "'g list set"
assumes relators: "rs∈R ⟹ rs ∈ lists (S ∪ uminus ` S)"
"rs∈R ⟹ sum_list rs = 0"
"rs∈R ⟹ proper_signed_list (map (charpair S) rs)"
begin
abbreviation "P ≡ map (charpair S) ` R"
abbreviation "P' ≡ GroupByPresentation.P' P"
abbreviation "Q ≡ GroupByPresentation.Q S P"
abbreviation "G ≡ GroupByPresentation.G S P"
abbreviation "relator_freeword rs ≡ Abs_freeword (map (charpair S) rs)"
abbreviation "freeliftid ≡ freeword_funlift id"
abbreviation induced_id :: "'g freeword set permutation ⇒ 'g"
where "induced_id ≡ GroupByPresentationInducedFun.induced_hom S P id"
lemma GroupByPresentation_S_P: "GroupByPresentation S P"
proof
show "⋀ps. ps ∈ P ⟹ fst ` set ps ⊆ S"
using fst_set_map_charpair_un_uminus relators(1) by fast
show "⋀ps. ps ∈ P ⟹ proper_signed_list ps" using relators(3) by fast
qed
lemmas G_UN = GroupByPresentation.G_UN[OF GroupByPresentation_S_P]
lemmas P'_FreeS = GroupByPresentation.P'_FreeS[OF GroupByPresentation_S_P]
lemma freeliftid_trivial_relator_freeword_R:
"rs∈R ⟹ freeliftid (relator_freeword rs) = 0"
using relators(2,3) freeword_funlift_Abs_freeword[of "map (charpair S) rs" id]
sum_list_map_cong[of rs "(apply_sign id) ∘ (charpair S)" id]
by simp
lemma freeliftid_trivial_P: "ps∈P ⟹ freeliftid (Abs_freeword ps) = 0"
using freeliftid_trivial_relator_freeword_R by fast
lemma GroupByPresentationInducedFun_S_P_id:
"GroupByPresentationInducedFun S P id"
by (
intro_locales, rule GroupByPresentation_S_P,
unfold_locales, rule freeliftid_trivial_P
)
lemma induced_id_Abs_freelist_conv_sum_list:
"ss∈lists S ⟹ induced_id (⌈FreeGroup S|Abs_freelist ss|Q⌉) = sum_list ss"
by (simp add:
GroupByPresentationInducedFun.induced_hom_Abs_freelist_conv_sum_list[
OF GroupByPresentationInducedFun_S_P_id
]
)
lemma lconj_relator_freeword_R:
"⟦ rs∈R; proper_signed_list xs; fst ` set xs ⊆ S ⟧ ⟹
lconjby (Abs_freeword xs) (relator_freeword rs) ∈ Q"
by (blast intro: genby_genset_closed FreeGroupI_transfer)
lemma rconj_relator_freeword:
assumes "rs∈R" "proper_signed_list xs" "fst ` set xs ⊆ S"
shows "rconjby (Abs_freeword xs) (relator_freeword rs) ∈ Q"
proof (rule genby_genset_closed, rule UN_I)
show "- Abs_freeword xs ∈ FreeGroup S"
using FreeGroupI_transfer[OF assms(2,3)] FreeGroup_uminus_closed by fast
from assms(1)
show "rconjby (Abs_freeword xs) (relator_freeword rs) ∈
lconjby (- Abs_freeword xs) ` Abs_freeword ` P"
by simp
qed
lemma lconjby_Abs_freelist_relator_freeword:
"⟦ rs∈R; xs∈lists S ⟧ ⟹ lconjby (Abs_freelist xs) (relator_freeword rs) ∈ Q"
using proper_signed_list_map_uniform_snd by (force intro: lconj_relator_freeword_R)
text ‹
Here we record that the lift of the identity map to the free group on @{term S} induces a
homomorphic surjection onto the group generated by @{term S} from the group presentation on
@{term S}, subject to the same relations as the elements of @{term S}.
›
theorem induced_id_hom_surj: "GroupHom G induced_id" "induced_id ` G = ⟨S⟩"
using GroupByPresentationInducedFun.hom_induced_hom[
OF GroupByPresentationInducedFun_S_P_id
]
GroupByPresentationInducedFun.induced_hom_surj[
OF GroupByPresentationInducedFun_S_P_id
]
by auto
end
locale GroupPresentation = GroupWithGeneratorsRelators S R
for S :: "'g::group_add set"
and R :: "'g list set"
+ assumes induced_id_inj: "inj_on induced_id G"
begin
abbreviation "inv_induced_id ≡ the_inv_into G induced_id"
lemma inv_induced_id_sum_list_S:
"ss ∈ lists S ⟹ inv_induced_id (sum_list ss) = (⌈FreeGroup S|Abs_freelist ss|Q⌉)"
using G_UN induced_id_inj induced_id_Abs_freelist_conv_sum_list
Abs_freelist_in_FreeGroup
by (blast intro: the_inv_into_f_eq)
end
subsection ‹Words over a generating set›
text ‹
Here we gather the necessary constructions and facts for studying a group generated by some set
in terms of words in the generators.
›
context monoid_add
begin
abbreviation "word_for A a as ≡ as ∈ lists A ∧ sum_list as = a"
definition reduced_word_for :: "'a set ⇒ 'a ⇒ 'a list ⇒ bool"
where "reduced_word_for A a as ≡ is_arg_min length (word_for A a) as"
abbreviation "reduced_word A as ≡ reduced_word_for A (sum_list as) as"
abbreviation "reduced_words_for A a ≡ Collect (reduced_word_for A a)"
abbreviation reduced_letter_set :: "'a set ⇒ 'a ⇒ 'a set"
where "reduced_letter_set A a ≡ ⋃( set ` (reduced_words_for A a) )"
definition word_length :: "'a set ⇒ 'a ⇒ nat"
where "word_length A a ≡ length (arg_min length (word_for A a))"
lemma reduced_word_forI:
assumes "as ∈ lists A" "sum_list as = a"
"⋀bs. bs ∈ lists A ⟹ sum_list bs = a ⟹ length as ≤ length bs"
shows "reduced_word_for A a as"
using assms
unfolding reduced_word_for_def
by (force intro: is_arg_minI)
lemma reduced_word_forI_compare:
"⟦ reduced_word_for A a as; bs ∈ lists A; sum_list bs = a; length bs = length as ⟧
⟹ reduced_word_for A a bs"
using reduced_word_for_def is_arg_min_eq[of length] by fast
lemma reduced_word_for_lists: "reduced_word_for A a as ⟹ as ∈ lists A"
using reduced_word_for_def is_arg_minD1 by fast
lemma reduced_word_for_sum_list: "reduced_word_for A a as ⟹ sum_list as = a"
using reduced_word_for_def is_arg_minD1 by fast
lemma reduced_word_for_minimal:
"⟦ reduced_word_for A a as; bs ∈ lists A; sum_list bs = a ⟧ ⟹
length as ≤ length bs"
using reduced_word_for_def is_arg_minD2[of length]
by fastforce
lemma reduced_word_for_length:
"reduced_word_for A a as ⟹ length as = word_length A a"
unfolding word_length_def reduced_word_for_def is_arg_min_def
by (fastforce intro: arg_min_equality[THEN sym])
lemma reduced_word_for_eq_length:
"reduced_word_for A a as ⟹ reduced_word_for A a bs ⟹ length as = length bs"
using reduced_word_for_length by simp
lemma reduced_word_for_arg_min:
"as ∈ lists A ⟹ sum_list as = a ⟹
reduced_word_for A a (arg_min length (word_for A a))"
using is_arg_min_arg_min_nat[of "word_for A a"]
unfolding reduced_word_for_def
by fast
lemma nil_reduced_word_for_0: "reduced_word_for A 0 []"
by (auto intro: reduced_word_forI)
lemma reduced_word_for_0_imp_nil: "reduced_word_for A 0 as ⟹ as = []"
using nil_reduced_word_for_0[of A] reduced_word_for_minimal[of A 0 as]
unfolding reduced_word_for_def is_arg_min_def
by (metis (mono_tags, opaque_lifting) length_0_conv length_greater_0_conv)
lemma not_reduced_word_for:
"⟦ bs ∈ lists A; sum_list bs = a; length bs < length as ⟧ ⟹
¬ reduced_word_for A a as"
using reduced_word_for_minimal by fastforce
lemma reduced_word_for_imp_reduced_word:
"reduced_word_for A a as ⟹ reduced_word A as"
unfolding reduced_word_for_def is_arg_min_def
by (fast intro: reduced_word_forI)
lemma sum_list_zero_nreduced:
"as ≠ [] ⟹ sum_list as = 0 ⟹ ¬ reduced_word A as"
using not_reduced_word_for[of "[]"] by simp
lemma order2_nreduced: "a+a=0 ⟹ ¬ reduced_word A [a,a]"
using sum_list_zero_nreduced by simp
lemma reduced_word_append_reduce_contra1:
assumes "¬ reduced_word A as"
shows "¬ reduced_word A (as@bs)"
proof (cases "as ∈ lists A" "bs ∈ lists A" rule: two_cases)
case both
define cs where cs: "cs ≡ ARG_MIN length cs. cs ∈ lists A ∧ sum_list cs = sum_list as"
with both(1) have "reduced_word_for A (sum_list as) cs"
using reduced_word_for_def is_arg_min_arg_min_nat[of "word_for A (sum_list as)"]
by auto
with assms both show ?thesis
using reduced_word_for_lists reduced_word_for_sum_list
reduced_word_for_minimal[of A "sum_list as" cs as]
reduced_word_forI_compare[of A "sum_list as" cs as]
not_reduced_word_for[of "cs@bs" A "sum_list (as@bs)"]
by fastforce
next
case one thus ?thesis using reduced_word_for_lists by fastforce
next
case other thus ?thesis using reduced_word_for_lists by fastforce
next
case neither thus ?thesis using reduced_word_for_lists by fastforce
qed
lemma reduced_word_append_reduce_contra2:
assumes "¬ reduced_word A bs"
shows "¬ reduced_word A (as@bs)"
proof (cases "as ∈ lists A" "bs ∈ lists A" rule: two_cases)
case both
define cs where cs: "cs ≡ ARG_MIN length cs. cs ∈ lists A ∧ sum_list cs = sum_list bs"
with both(2) have "reduced_word_for A (sum_list bs) cs"
using reduced_word_for_def is_arg_min_arg_min_nat[of "word_for A (sum_list bs)" ]
by auto
with assms both show ?thesis
using reduced_word_for_lists reduced_word_for_sum_list
reduced_word_for_minimal[of A "sum_list bs" cs bs]
reduced_word_forI_compare[of A "sum_list bs" cs bs]
not_reduced_word_for[of "as@cs" A "sum_list (as@bs)"]
by fastforce
next
case one thus ?thesis using reduced_word_for_lists by fastforce
next
case other thus ?thesis using reduced_word_for_lists by fastforce
next
case neither thus ?thesis using reduced_word_for_lists by fastforce
qed
lemma contains_nreduced_imp_nreduced:
"¬ reduced_word A bs ⟹ ¬ reduced_word A (as@bs@cs)"
using reduced_word_append_reduce_contra1 reduced_word_append_reduce_contra2
by fast
lemma contains_order2_nreduced: "a+a=0 ⟹ ¬ reduced_word A (as@[a,a]@bs)"
using order2_nreduced contains_nreduced_imp_nreduced by fast
lemma reduced_word_Cons_reduce_contra:
"¬ reduced_word A as ⟹ ¬ reduced_word A (a#as)"
using reduced_word_append_reduce_contra2[of A as "[a]"] by simp
lemma reduced_word_Cons_reduce: "reduced_word A (a#as) ⟹ reduced_word A as"
using reduced_word_Cons_reduce_contra by fast
lemma reduced_word_singleton:
assumes "a∈A" "a≠0"
shows "reduced_word A [a]"
proof (rule reduced_word_forI)
from assms(1) show "[a] ∈ lists A" by simp
next
fix bs assume bs: "bs ∈ lists A" "sum_list bs = sum_list [a]"
with assms(2) show "length [a] ≤ length bs" by (cases bs) auto
qed simp
lemma el_reduced:
assumes "0 ∉ A" "as ∈ lists A" "sum_list as ∈ A" "reduced_word A as"
shows "length as = 1"
proof-
define n where n: "n ≡ length as"
from assms(3) obtain a where "[a]∈lists A" "sum_list as = sum_list [a]" by auto
with n assms(1,3,4) have "n≤1" "n>0"
using reduced_word_for_minimal[of A _ as "[a]"] by auto
hence "n = 1" by simp
with n show ?thesis by fast
qed
lemma reduced_letter_set_0: "reduced_letter_set A 0 = {}"
using reduced_word_for_0_imp_nil by simp
lemma reduced_letter_set_subset: "reduced_letter_set A a ⊆ A"
using reduced_word_for_lists by fast
lemma reduced_word_forI_length:
"⟦ as ∈ lists A; sum_list as = a; length as = word_length A a ⟧ ⟹
reduced_word_for A a as"
using reduced_word_for_arg_min reduced_word_for_length
reduced_word_forI_compare[of A a _ as]
by fastforce
lemma word_length_le:
"as ∈ lists A ⟹ sum_list as = a ⟹ word_length A a ≤ length as"
using reduced_word_for_arg_min reduced_word_for_length
reduced_word_for_minimal[of A]
by fastforce
lemma reduced_word_forI_length':
"⟦ as ∈ lists A; sum_list as = a; length as ≤ word_length A a ⟧ ⟹
reduced_word_for A a as"
using word_length_le[of as A] reduced_word_forI_length[of as A] by fastforce
lemma word_length_lt:
"as ∈ lists A ⟹ sum_list as = a ⟹ ¬ reduced_word_for A a as ⟹
word_length A a < length as"
using reduced_word_forI_length' by fastforce
end
lemma in_genby_reduced_letter_set:
assumes "as ∈ lists A" "sum_list as = a"
shows "a ∈ ⟨reduced_letter_set A a⟩"
proof-
define xs where xs: "xs ≡ arg_min length (word_for A a)"
with assms have "xs ∈ lists (reduced_letter_set A a)" "sum_list xs = a"
using reduced_word_for_arg_min[of as A] reduced_word_for_sum_list by auto
thus ?thesis using genby_eq_sum_lists by force
qed
lemma reduced_word_for_genby_arg_min:
fixes A :: "'a::group_add set"
defines "B ≡ A ∪ uminus ` A"
assumes "a∈⟨A⟩"
shows "reduced_word_for B a (arg_min length (word_for B a))"
using assms genby_eq_sum_lists[of A] reduced_word_for_arg_min[of _ B a]
by auto
lemma reduced_word_for_genby_sym_arg_min:
assumes "uminus ` A ⊆ A" "a∈⟨A⟩"
shows "reduced_word_for A a (arg_min length (word_for A a))"
proof-
from assms(1) have "A = A ∪ uminus ` A" by auto
with assms(2) show ?thesis
using reduced_word_for_genby_arg_min[of a A] by simp
qed
lemma in_genby_imp_in_reduced_letter_set:
fixes A :: "'a::group_add set"
defines "B ≡ A ∪ uminus ` A"
assumes "a ∈ ⟨A⟩"
shows "a ∈ ⟨reduced_letter_set B a⟩"
using assms genby_eq_sum_lists[of A] in_genby_reduced_letter_set[of _ B]
by auto
lemma in_genby_sym_imp_in_reduced_letter_set:
"uminus ` A ⊆ A ⟹ a ∈ ⟨A⟩ ⟹ a ∈ ⟨reduced_letter_set A a⟩"
using in_genby_imp_in_reduced_letter_set by (fastforce simp add: Un_absorb2)
end