Theory Simulation

theory Simulation
  imports Semantics
begin

text ‹This file is a (heavily modified) variant of the theory {\it Psi\_Calculi.Simulation}
from~\cite{DBLP:journals/afp/Bengtson12}.›

context env begin

definition
  "simulation" :: "'b  ('a, 'b, 'c) psi 
                   ('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set 
                   ('a, 'b, 'c) psi  bool" ("_  _ ↝[_] _" [80, 80, 80, 80] 80)
  where
    "Ψ  P ↝[Rel] Q  α Q'. Ψ  Q α  Q'  bn α ♯* Ψ  bn α ♯* P  (P'. Ψ  P α  P'  (Ψ, P', Q')  Rel)"

abbreviation
  simulationNilJudge ("_ ↝[_] _" [80, 80, 80] 80) where "P ↝[Rel] Q  SBottom'  P ↝[Rel] Q"

lemma simI[consumes 1, case_names cSim]:
  fixes Ψ   :: 'b
    and P   :: "('a, 'b, 'c) psi"
    and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q   :: "('a, 'b, 'c) psi"
    and C   :: "'d::fs_name"

assumes Eqvt: "eqvt Rel"
  and   Sim: "α Q'. Ψ  Q α  Q'; bn α ♯* P; bn α ♯* Q; bn α  ♯* Ψ; distinct(bn α);
                         bn α ♯* (subject α); bn α ♯* C  P'. Ψ  P α  P'  (Ψ, P', Q')  Rel"

shows "Ψ  P ↝[Rel] Q"
proof -
  {
    fix α Q'
    assume "Ψ  Q α  Q'" and "bn α ♯* Ψ" and "bn α ♯* P"
    then have "P'. Ψ  P α  P'  (Ψ, P', Q')  Rel"
    proof(nominal_induct α rule: action.strong_induct)
      case(In M N)
      then show ?case by(auto simp add: Sim)
    next
      case(BrIn M N)
      then show ?case by(auto simp add: Sim)
    next
      case(Out M xvec N)
      moreover {
        fix M xvec N Q'
        assume "(xvec::name list) ♯* Ψ" and "xvec ♯* P"
        obtain p where xvecFreshPsi: "((p::name prm)  (xvec::name list)) ♯* Ψ"
        and xvecFreshM: "(p  xvec) ♯* (M::'a)"
        and xvecFreshN: "(p  xvec) ♯* (N::'a)"
        and xvecFreshP: "(p  xvec) ♯* P"
        and xvecFreshQ: "(p  xvec) ♯* Q"
        and xvecFreshQ': "(p  xvec) ♯* (Q'::('a, 'b, 'c) psi)"
        and xvecFreshC: "(p  xvec) ♯* C"
        and xvecFreshxvec: "(p  xvec) ♯* xvec"
        and S: "(set p)  (set xvec) × (set(p  xvec))"
        and dpr: "distinctPerm p"
          by(rule name_list_avoiding[where xvec="xvec" and c="(Ψ, M, Q, N, P, Q', xvec, C)"]) auto
        from (p  xvec) ♯* M distinctPerm p have "xvec ♯* (p  M)"
          by(subst pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst, where pi=p, symmetric]) simp

        assume Trans: "Ψ  Q M⦇ν*xvec⦈⟨N  Q'"
        with xvecFreshN xvecFreshQ' S
        have "Ψ  Q M⦇ν*(p  xvec)⦈⟨(p  N)  (p  Q')"
          by(simp add: boundOutputChainAlpha'' residualInject)
        moreover then have "distinct(p  xvec)"  by(auto dest: boundOutputDistinct)

        moreover note xvecFreshPsi xvecFreshP xvecFreshQ xvecFreshM xvecFreshC
        ultimately obtain P' where PTrans: "Ψ  P M⦇ν*(p  xvec)⦈⟨(p  N)  P'"
        and P'RelQ': "(Ψ, P', p  Q')  Rel"
          using Sim by (metis bn.simps(3) optionFreshChain(1) subject.simps(3))
        then have "(p  Ψ)  (p  P) (p  (M⦇ν*(p  xvec)⦈⟨(p  N)  P'))"
          by(simp add: semantics.eqvt)
        with xvec ♯* Ψ xvecFreshPsi xvec ♯* P xvecFreshP S dpr
        have "Ψ  P (p  M)⦇ν*xvec⦈⟨N  (p  P')"
          by(simp add: eqvts name_set_fresh_fresh)
        with xvec ♯* Ψ xvecFreshPsi xvec ♯* P xvecFreshP S xvec ♯* (p  M)
        have "Ψ  P (p  p  M)⦇ν*xvec⦈⟨N  (p  P')"
          by(simp add: outputPermSubject)

        with dpr have "Ψ  P M⦇ν*xvec⦈⟨N  (p  P')"
          by simp

        moreover from P'RelQ' Eqvt have "(p  Ψ, p  P', p  p  Q')  Rel"
          apply(simp add: eqvt_def eqvts)
          apply(erule ballE[where x="(Ψ, P', p  Q')"])
           apply(erule allE[where x="p"])
          by(auto simp add: eqvts)

        with xvec ♯* Ψ xvecFreshPsi S dpr have "(Ψ, p  P', Q')  Rel"
          by simp
        ultimately have "P'. Ψ  P  M⦇ν*xvec⦈⟨N  P'  (Ψ, P', Q')  Rel"
          by blast
      }
      ultimately show ?case by force
    next
      case(BrOut M xvec N)
      moreover {
        fix M xvec N Q'
        assume "(xvec::name list) ♯* Ψ" and "xvec ♯* P"
        obtain p where xvecFreshPsi: "((p::name prm)  (xvec::name list)) ♯* Ψ"
        and xvecFreshM: "(p  xvec) ♯* (M::'a)"
        and xvecFreshN: "(p  xvec) ♯* (N::'a)"
        and xvecFreshP: "(p  xvec) ♯* P"
        and xvecFreshQ: "(p  xvec) ♯* Q"
        and xvecFreshQ': "(p  xvec) ♯* (Q'::('a, 'b, 'c) psi)"
        and xvecFreshC: "(p  xvec) ♯* C"
        and xvecFreshxvec: "(p  xvec) ♯* xvec"
        and S: "(set p)  (set xvec) × (set(p  xvec))"
        and dpr: "distinctPerm p"
          by(rule name_list_avoiding[where xvec="xvec" and c="(Ψ, M, Q, N, P, Q', xvec, C)"]) auto

        from (p  xvec) ♯* M distinctPerm p have "xvec ♯* (p  M)"
          by(subst pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst, where pi=p, symmetric]) simp

        assume Trans: "Ψ  Q ¡M⦇ν*xvec⦈⟨N  Q'"
        with xvecFreshN xvecFreshQ' S
        have "Ψ  Q ¡M⦇ν*(p  xvec)⦈⟨(p  N)  (p  Q')"
          by(simp add: boundOutputChainAlpha'' residualInject)
        moreover then have "distinct(p  xvec)"
          by(auto dest: boundOutputDistinct)

        moreover note xvecFreshPsi xvecFreshP xvecFreshQ xvecFreshM xvecFreshC
        ultimately obtain P' where PTrans: "Ψ  P ¡M⦇ν*(p  xvec)⦈⟨(p  N)  P'"
        and P'RelQ': "(Ψ, P', p  Q')  Rel"
          by(auto dest: Sim)
        then have "(p  Ψ)  (p  P) (p  (¡M⦇ν*(p  xvec)⦈⟨(p  N)  P'))"
          by(metis semantics.eqvt)
        with xvec ♯* Ψ xvecFreshPsi xvec ♯* P xvecFreshP S dpr
        have "Ψ  P ¡(p  M)⦇ν*xvec⦈⟨N  (p  P')"
          by(simp add: eqvts name_set_fresh_fresh)
        with xvec ♯* Ψ xvecFreshPsi xvec ♯* P xvecFreshP S xvec ♯* (p  M)
        have "Ψ  P ¡(p  p  M)⦇ν*xvec⦈⟨N  (p  P')"
          by(simp add: broutputPermSubject)

        with dpr have "Ψ  P ¡M⦇ν*xvec⦈⟨N  (p  P')"
          by simp

        moreover from P'RelQ' Eqvt have "(p  Ψ, p  P', p  p  Q')  Rel"
          apply(simp add: eqvt_def eqvts)
          apply(erule ballE[where x="(Ψ, P', p  Q')"])
           apply(erule allE[where x="p"])
          by(auto simp add: eqvts)

        with xvec ♯* Ψ xvecFreshPsi S dpr have "(Ψ, p  P', Q')  Rel"
          by simp
        ultimately have "P'. Ψ  P  ¡M⦇ν*xvec⦈⟨N  P'  (Ψ, P', Q')  Rel"
          by blast
      }
      ultimately show ?case by force
    next
      case Tau
      then show ?case by (auto simp add: Sim)
    qed
  }
  then show ?thesis
    by (auto simp add: simulation_def)
qed

lemma simI2[case_names cSim]:
  fixes Ψ   :: 'b
    and P   :: "('a, 'b, 'c) psi"
    and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q   :: "('a, 'b, 'c) psi"
    and C   :: "'d::fs_name"

assumes Sim: "α Q'. Ψ  Q α  Q'; bn α ♯* P; bn α  ♯* Ψ; distinct(bn α)  P'. Ψ  P α  P'  (Ψ, P', Q')  Rel"

shows "Ψ  P ↝[Rel] Q"
  using assms
  by(auto simp add: simulation_def dest: boundOutputDistinct)

lemma simIChainFresh[consumes 4, case_names cSim]:
  fixes Ψ    :: 'b
    and P    :: "('a, 'b, 'c) psi"
    and Rel  :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q    :: "('a, 'b, 'c) psi"
    and xvec :: "name list"
    and C    :: "'d::fs_name"

assumes Eqvt: "eqvt Rel"
  and   "xvec ♯* Ψ"
  and   "xvec ♯* P"
  and   "xvec ♯* Q"
  and   Sim: "α Q'. Ψ  Q α  Q'; bn α ♯* P; bn α ♯* Q; bn α ♯* Ψ;
                         bn α ♯* subject α; distinct(bn α); bn α ♯* C; xvec ♯* α; xvec ♯* Q' 
                         P'. Ψ  P α  P'  (Ψ, P', Q')  Rel"
shows "Ψ  P ↝[Rel] Q"
  using eqvt Rel
proof(induct rule: simI[where C="(xvec, C)"])
  case(cSim α Q')
  from bn α ♯* (xvec, C) have "bn α ♯* xvec" and "bn α ♯* C" by simp+
  obtain p::"name prm" where "(p  xvec) ♯* Ψ" and  "(p  xvec) ♯* P" and  "(p  xvec) ♯* Q"
    and  "(p  xvec) ♯* α" and S: "set p  set xvec × set(p  xvec)"
    and "distinctPerm p"
    by(rule name_list_avoiding[where c="(Ψ, P, Q, α)" and xvec=xvec]) auto
  show ?case
  proof(cases rule: actionCases[where α=α])
    case(cInput M N)
    from Ψ  Q α  Q' α=MN have "(p  Ψ)  (p  Q) (p  (MN  Q'))"
      by(auto intro: semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* Q (p  xvec) ♯* Q S
    have QTrans: "Ψ  Q (p  M)(p  N)  (p  Q')"
      by(simp add: eqvts)
    moreover from (p  xvec) ♯* α have "(p  (p  xvec)) ♯* (p  α)"
      by(simp only: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
    with distinctPerm p α=MN have "xvec ♯* (p  M)" and "xvec ♯* (p  N)" by simp+
    moreover with QTrans xvec ♯* Q have "xvec ♯* (p  Q')"
      by(metis inputFreshChainDerivative)
    ultimately have "P'. Ψ  P  (p  M)(p  N)  P'  (Ψ, P', (p  Q'))  Rel"
      by(simp add: Sim)
    then obtain P' where PTrans: "Ψ  P  (p  M)(p  N)  P'" and P'RelQ': "(Ψ, P', (p  Q'))  Rel"
      by blast
    from PTrans have "(p  Ψ)  (p  P)  (p  ((p  M)(p  N)  P'))"
      by(rule semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* P (p  xvec) ♯* P S distinctPerm p
    have "Ψ  P  MN  (p  P')" by(simp add: eqvts)
    moreover from P'RelQ' eqvt Rel have "(p  Ψ, p  P', p  p  Q')  Rel"
      by(auto simp add: eqvt_def)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ S distinctPerm p
    have "(Ψ, p  P', Q')  Rel" by simp
    ultimately show ?thesis using α=MN by blast
  next
    case(cBrInput M N)
    from Ψ  Q α  Q' α=¿MN have "(p  Ψ)  (p  Q) (p  (¿MN  Q'))"
      by(auto intro: semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* Q (p  xvec) ♯* Q S
    have QTrans: "Ψ  Q ¿(p  M)(p  N)  (p  Q')"
      by(simp add: eqvts)
    moreover from (p  xvec) ♯* α have "(p  (p  xvec)) ♯* (p  α)"
      by(simp only: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
    with distinctPerm p α=¿MN have "xvec ♯* (p  M)" and "xvec ♯* (p  N)" by simp+
    moreover with QTrans xvec ♯* Q have "xvec ♯* (p  Q')" by(metis brinputFreshChainDerivative)
    ultimately have "P'. Ψ  P  ¿(p  M)(p  N)  P'  (Ψ, P', (p  Q'))  Rel"
      by(simp add: Sim)
    then obtain P' where PTrans: "Ψ  P  ¿(p  M)(p  N)  P'" and P'RelQ': "(Ψ, P', (p  Q'))  Rel"
      by blast
    from PTrans have "(p  Ψ)  (p  P)  (p  (¿(p  M)(p  N)  P'))"
      by(rule semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* P (p  xvec) ♯* P S distinctPerm p
    have "Ψ  P  ¿MN  (p  P')" by(simp add: eqvts)
    moreover from P'RelQ' eqvt Rel have "(p  Ψ, p  P', p  p  Q')  Rel"
      by(auto simp add: eqvt_def)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ S distinctPerm p
    have "(Ψ, p  P', Q')  Rel" by simp
    ultimately show ?thesis using α=¿MN by blast
  next
    case(cOutput M yvec N)
    from distinct(bn α) bn α ♯* subject α α=M⦇ν*yvec⦈⟨N have "distinct yvec" and "yvec ♯* M" by simp+
    from Ψ  Q α  Q' α=M⦇ν*yvec⦈⟨N have "(p  Ψ)  (p  Q) (p  (M⦇ν*yvec⦈⟨N  Q'))"
      by(auto intro: semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* Q (p  xvec) ♯* Q S
    have QTrans: "Ψ  Q (p  M)⦇ν*(p  yvec)⦈⟨(p  N)  (p  Q')"
      by(simp add: eqvts)
    with S bn α ♯* xvec (p  xvec) ♯* α α=M⦇ν*yvec⦈⟨N have "Ψ  Q (p  M)⦇ν*yvec⦈⟨(p  N)  (p  Q')"
      by simp
    moreover from (p  xvec) ♯* α have "(p  (p  xvec)) ♯* (p  α)"
      by(simp only: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
    with distinctPerm p α=M⦇ν*yvec⦈⟨N have "xvec ♯* (p  M)" and "xvec ♯* (p  N)" and "xvec ♯* (p  yvec)" by simp+
    moreover with QTrans xvec ♯* Q distinct yvec yvec ♯* M have "xvec ♯* (p  Q')"
      apply(drule_tac outputFreshChainDerivative(2))
      by(auto simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
    moreover from yvec ♯* M S bn α ♯* xvec (p  xvec) ♯* α α=M⦇ν*yvec⦈⟨N distinctPerm p
    have "yvec ♯* (p  M)" by(subst pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst, symmetric, where pi=p]) simp
    ultimately have "P'. Ψ  P  (p  M)⦇ν*yvec⦈⟨(p  N)  P'  (Ψ, P', (p  Q'))  Rel"
      using bn α ♯* Ψ bn α ♯* P bn α ♯* Qbn α ♯* xvec bn α ♯* C yvec ♯* M α=M⦇ν*yvec⦈⟨N distinct yvec
      by(simp add: Sim)
    then obtain P' where PTrans: "Ψ  P  (p  M)⦇ν*yvec⦈⟨(p  N)  P'" and P'RelQ': "(Ψ, P', (p  Q'))  Rel"
      by blast
    from PTrans have "(p  Ψ)  (p  P)  (p  ((p  M)⦇ν*yvec⦈⟨(p  N)  P'))"
      by(rule semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* P (p  xvec) ♯* P S distinctPerm p bn α ♯* xvec (p  xvec) ♯* α α=M⦇ν*yvec⦈⟨N
    have "Ψ  P  M⦇ν*yvec⦈⟨N  (p  P')" by(simp add: eqvts)
    moreover from P'RelQ' eqvt Rel have "(p  Ψ, p  P', p  p  Q')  Rel"
      by(auto simp add: eqvt_def)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ S distinctPerm p
    have "(Ψ, p  P', Q')  Rel" by simp
    ultimately show ?thesis using α=M⦇ν*yvec⦈⟨N by blast
  next
    case(cBrOutput M yvec N)
    from distinct(bn α) bn α ♯* subject α α=¡M⦇ν*yvec⦈⟨N have "distinct yvec" and "yvec ♯* M" by simp+
    from Ψ  Q α  Q' α=¡M⦇ν*yvec⦈⟨N have "(p  Ψ)  (p  Q) (p  (¡M⦇ν*yvec⦈⟨N  Q'))"
      by(auto intro: semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* Q (p  xvec) ♯* Q S
    have QTrans: "Ψ  Q ¡(p  M)⦇ν*(p  yvec)⦈⟨(p  N)  (p  Q')"
      by(simp add: eqvts)
    with S bn α ♯* xvec (p  xvec) ♯* α α=¡M⦇ν*yvec⦈⟨N have "Ψ  Q ¡(p  M)⦇ν*yvec⦈⟨(p  N)  (p  Q')"
      by simp
    moreover from (p  xvec) ♯* α have "(p  (p  xvec)) ♯* (p  α)"
      by(simp only: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
    with distinctPerm p α=¡M⦇ν*yvec⦈⟨N have "xvec ♯* (p  M)" and "xvec ♯* (p  N)" and "xvec ♯* (p  yvec)" by simp+
    moreover with QTrans xvec ♯* Q distinct yvec yvec ♯* M have "xvec ♯* (p  Q')"
      apply(drule_tac broutputFreshChainDerivative(2))
      by (auto simp add: pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst])
    moreover from yvec ♯* M S bn α ♯* xvec (p  xvec) ♯* α α=¡M⦇ν*yvec⦈⟨N distinctPerm p
    have "yvec ♯* (p  M)" by(subst pt_fresh_star_bij[OF pt_name_inst, OF at_name_inst, symmetric, where pi=p]) simp
    ultimately have "P'. Ψ  P  ¡(p  M)⦇ν*yvec⦈⟨(p  N)  P'  (Ψ, P', (p  Q'))  Rel"
      using bn α ♯* Ψ bn α ♯* P bn α ♯* Qbn α ♯* xvec bn α ♯* C yvec ♯* M α=¡M⦇ν*yvec⦈⟨N distinct yvec
      by(simp add: Sim)
    then obtain P' where PTrans: "Ψ  P  ¡(p  M)⦇ν*yvec⦈⟨(p  N)  P'" and P'RelQ': "(Ψ, P', (p  Q'))  Rel"
      by blast
    from PTrans have "(p  Ψ)  (p  P)  (p  (¡(p  M)⦇ν*yvec⦈⟨(p  N)  P'))"
      by(rule semantics.eqvt)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ xvec ♯* P (p  xvec) ♯* P S distinctPerm p bn α ♯* xvec (p  xvec) ♯* α α=¡M⦇ν*yvec⦈⟨N
    have "Ψ  P  ¡M⦇ν*yvec⦈⟨N  (p  P')" by(simp add: eqvts)
    moreover from P'RelQ' eqvt Rel have "(p  Ψ, p  P', p  p  Q')  Rel"
      by(auto simp add: eqvt_def)
    with xvec ♯* Ψ (p  xvec) ♯* Ψ S distinctPerm p
    have "(Ψ, p  P', Q')  Rel" by simp
    ultimately show ?thesis using α=¡M⦇ν*yvec⦈⟨N by blast
  next
    case cTau
    from Ψ  Q α  Q' α = τ xvec ♯* Q have "xvec ♯* Q'"
      by(blast dest: tauFreshChainDerivative)
    with Ψ  Q α  Q' α = τ
    show ?thesis
      using Sim by simp
  qed
qed

lemma simIFresh[consumes 4, case_names cSim]:
  fixes Ψ   :: 'b
    and P   :: "('a, 'b, 'c) psi"
    and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q   :: "('a, 'b, 'c) psi"
    and x   :: name
    and C   :: "'d::fs_name"

assumes Eqvt: "eqvt Rel"
  and   "x  Ψ"
  and   "x  P"
  and   "x  Q"
  and   "α Q'. Ψ  Q α  Q'; bn α ♯* P; bn α ♯* Q; bn α ♯* Ψ;
                    bn α ♯* subject α; distinct(bn α); bn α ♯* C; x  α; x  Q' 
                    P'. Ψ  P α  P'  (Ψ, P', Q')  Rel"

shows "Ψ  P ↝[Rel] Q"
  using assms
  by (auto intro: simIChainFresh[where xvec="[x]" and C=C])

lemma simE:
  fixes F   :: 'b
    and P   :: "('a, 'b, 'c) psi"
    and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q   :: "('a, 'b, 'c) psi"

assumes "Ψ  P ↝[Rel] Q"

shows "α Q'. Ψ  Q α  Q'; bn α ♯* Ψ; bn α ♯* P  P'. Ψ  P α  P'  (Ψ, P', Q')  Rel"
  using assms
  by(auto simp add: simulation_def)

lemma simClosedAux:
  fixes Ψ   :: 'b
    and P   :: "('a, 'b, 'c) psi"
    and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q   :: "('a, 'b, 'c) psi"
    and p   :: "name prm"

assumes EqvtRel: "eqvt Rel"
  and   PSimQ: "Ψ  P ↝[Rel] Q"

shows "(p  Ψ)  (p  P) ↝[Rel] (p  Q)"
  using EqvtRel
proof(induct rule: simI[of _ _ _ _ "(Ψ, P, p)"])
  case(cSim α Q')
  from p  Ψ  p  Q α  Q'
  have "(rev p  p  Ψ)  (rev p  p  Q) (rev p  (α  Q'))"
    by(blast dest: semantics.eqvt)
  then have "Ψ  Q (rev p  α)  (rev p  Q')"
    by(simp add: eqvts)
  moreover with bn α ♯* (Ψ, P, p) have "bn α ♯* Ψ" and "bn α ♯* P" and "bn α ♯* p" by simp+
  ultimately obtain P' where PTrans: "Ψ  P (rev p  α)  P'"
    and P'RelQ': "(Ψ, P', rev p  Q')  Rel"
    using PSimQ
    by(force dest: simE freshChainPermSimp simp add: eqvts)
  from PTrans have "(p  Ψ)  (p  P) (p  ((rev p  α)  P'))"
    by(rule semantics.eqvt)
  with bn α ♯* p have "(p  Ψ)  (p  P) α  (p  P')"
    by(simp add: eqvts freshChainPermSimp)
  moreover from P'RelQ' EqvtRel have "(p  (Ψ, P', rev p  Q'))  Rel"
    by(simp only: eqvt_def)
  then have "(p  Ψ, p  P', Q')  Rel" by simp
  ultimately show ?case by blast
qed

lemma simClosed:
  fixes Ψ   :: 'b
    and P   :: "('a, 'b, 'c) psi"
    and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q   :: "('a, 'b, 'c) psi"
    and p   :: "name prm"

assumes EqvtRel: "eqvt Rel"

shows "Ψ  P ↝[Rel] Q  (p  Ψ)  (p  P) ↝[Rel] (p  Q)"
  and "P ↝[Rel] Q  (p  P) ↝[Rel] (p  Q)"
  using EqvtRel
  by(force dest: simClosedAux simp add: permBottom)+

lemma reflexive:
  fixes Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Ψ   :: 'b
    and P   :: "('a, 'b, 'c) psi"

assumes "{(Ψ, P, P) | Ψ P. True}  Rel"

shows "Ψ  P ↝[Rel] P"
  using assms
  by(auto simp add: simulation_def)

lemma transitive:
  fixes Ψ     :: 'b
    and P     :: "('a, 'b, 'c) psi"
    and Rel   :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q     :: "('a, 'b, 'c) psi"
    and Rel'  :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and R     :: "('a, 'b, 'c) psi"
    and Rel'' :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes PSimQ: "Ψ  P ↝[Rel] Q"
  and   QSimR: "Ψ  Q ↝[Rel'] R"
  and   Eqvt: "eqvt Rel''"
  and   Set: "{(Ψ, P, R) | Ψ P R. Q. (Ψ, P, Q)  Rel  (Ψ, Q, R)  Rel'}  Rel''"

shows "Ψ  P ↝[Rel''] R"
  using eqvt Rel''
proof(induct rule: simI[where C=Q])
  case(cSim α R')
  from QSimR Ψ  R α  R' (bn α) ♯* Ψ (bn α) ♯* Q
  obtain Q' where QTrans: "Ψ  Q α  Q'" and Q'Rel'R': "(Ψ, Q', R')  Rel'"
    by(blast dest: simE)
  from PSimQ QTrans bn α ♯* Ψ bn α ♯* P
  obtain P' where PTrans: "Ψ  P α  P'" and P'RelQ': "(Ψ, P', Q')  Rel"
    by(blast dest: simE)
  with PTrans Q'Rel'R' P'RelQ' Set
  show ?case by blast
qed

lemma statEqSim:
  fixes Ψ   :: 'b
    and P   :: "('a, 'b, 'c) psi"
    and Rel :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q   :: "('a, 'b, 'c) psi"
    and Ψ'  :: 'b

assumes PSimQ: "Ψ  P ↝[Rel] Q"
  and   "eqvt Rel'"
  and   "Ψ  Ψ'"
  and   C1: "Ψ'' R S Ψ'''. (Ψ'', R, S)  Rel; Ψ''  Ψ'''  (Ψ''', R, S)  Rel'"

shows "Ψ'  P ↝[Rel'] Q"
  using eqvt Rel'
proof(induct rule: simI[of _ _ _ _ Ψ])
  case(cSim α Q')
  from Ψ'  Q α  Q' Ψ  Ψ'
  have "Ψ  Q α  Q'" by(metis statEqTransition AssertionStatEqSym)
  with PSimQ bn α ♯* Ψ bn α ♯* P
  obtain P' where "Ψ  P α  P'" and "(Ψ, P', Q')  Rel"
    by(blast dest: simE)

  from Ψ  P α  P' Ψ  Ψ' have "Ψ'  P α  P'"
    by(rule statEqTransition)
  moreover from (Ψ, P', Q')  Rel Ψ  Ψ' have "(Ψ', P', Q')  Rel'"
    by(rule C1)
  ultimately show ?case by blast
qed

lemma monotonic:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and A :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
    and Q :: "('a, 'b, 'c) psi"
    and B :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes "Ψ  P ↝[A] Q"
  and   "A  B"

shows "Ψ  P ↝[B] Q"
  using assms
  by(simp (no_asm) add: simulation_def) (auto dest: simE)

end

end