Theory Refine_Imperative_HOL.Sepref_Combinator_Setup
section ‹Setup for Combinators›
theory Sepref_Combinator_Setup
imports Sepref_Rules Sepref_Monadify
keywords "sepref_register" :: thy_decl
and "sepref_decl_intf" :: thy_decl
begin
subsection ‹Interface Types›
text ‹
This tool allows the declaration of interface types.
An interface type is a new type, and a rewriting rule to an existing (logic) type,
which is used to encode objects of the interface type in the logic.
›
context begin
private definition T :: "string ⇒ unit list ⇒ unit" where "T _ _ ≡ ()"
private lemma unit_eq: "(a::unit) ≡ b" by simp
named_theorems "__itype_rewrite"
ML ‹
signature SEPREF_INTF_TYPES = sig
val decl_intf_type_cmd: ((string list * binding) * mixfix) * string -> local_theory -> local_theory
val register_itype_rewrite: typ -> typ -> Proof.context -> local_theory
val norm_intf_type: Proof.context -> typ -> typ
val check_intf_type: Proof.context -> typ -> typ -> bool
val check_intf_type_msg: (typ * typ -> unit) -> Proof.context -> typ -> typ -> unit
val check_intf_type_err: Proof.context -> typ -> typ -> unit
end
structure Sepref_Intf_Types: SEPREF_INTF_TYPES = struct
fun t2t (Type(name,args)) =
@{term T}
$HOLogic.mk_string name
$HOLogic.mk_list @{typ unit} (map t2t args)
| t2t (TFree (name,_)) = Var (("F"^name,0),HOLogic.unitT)
| t2t (TVar ((name,i),_)) = Var (("V"^name,i),HOLogic.unitT)
fun tt2 (t as (Var ((name,i),_))) =
if match_string "F*" name then TFree (unprefix "F" name, dummyS)
else if match_string "V*" name then TVar ((unprefix "V" name,i), dummyS)
else raise TERM("tt2: Invalid var",[t])
| tt2 @{mpat "T ?name ?args"} = Type (HOLogic.dest_string name, HOLogic.dest_list args |> map tt2)
| tt2 t = raise TERM("tt2: Invalid",[t])
fun mk_t2t_rew ctxt T1 T2 = let
fun chk_vars T = exists_subtype is_TVar T andalso raise TYPE("Type must not contain schematics",[T],[])
val _ = chk_vars T1
val _ = chk_vars T2
val free1 = Term.add_tfreesT T1 []
val free2 = Term.add_tfreesT T2 []
val _ = subset (=) (free2,free1) orelse raise TYPE("Free variables on RHS must also occur on LHS",[T1,T2],[])
in
Thm.instantiate' [] [
t2t T1 |> Thm.cterm_of ctxt |> SOME,
t2t T2 |> Thm.cterm_of ctxt |> SOME
]
@{thm unit_eq}
end
fun register_itype_rewrite T1 T2 lthy =
lthy
|> Local_Theory.note ((Binding.empty,@{attributes ["__itype_rewrite"]}),[mk_t2t_rew lthy T1 T2])
|> #2
val decl_intf_type_parser =
Parse.type_args -- Parse.binding -- Parse.opt_mixfix --| @{keyword "is"} -- Parse.typ
fun decl_intf_type_cmd (((args,a),mx),T2_raw) lthy = let
val (T1,lthy) = Typedecl.typedecl {final = true} (a, map (rpair dummyS) args, mx) lthy
val T2 = Syntax.read_typ lthy T2_raw
in
register_itype_rewrite T1 T2 lthy
end
fun norm_intf_typet ctxt T = let
val rew_rls = Named_Theorems.get ctxt @{named_theorems "__itype_rewrite"}
in
t2t T
|> Thm.cterm_of ctxt
|> Drule.mk_term
|> Local_Defs.unfold0 ctxt rew_rls
|> Drule.dest_term
|> Thm.term_of
end
fun norm_intf_type ctxt T = norm_intf_typet ctxt T |> tt2
fun check_intf_type ctxt iT cT = let
val it = norm_intf_typet ctxt iT
val ct = t2t cT
val thy = Proof_Context.theory_of ctxt
in
Pattern.matches thy (it,ct)
end
fun check_intf_type_msg msg ctxt iT cT = let
val it = norm_intf_typet ctxt iT
val ct = t2t cT
val thy = Proof_Context.theory_of ctxt
in
if Pattern.matches thy (it,ct) then ()
else msg (tt2 it, tt2 ct)
end
fun check_intf_type_err ctxt iT cT = let
fun msg (iT',cT') = Pretty.block [
Pretty.str "Interface type and logical type do not match",
Pretty.fbrk,
Pretty.str "Interface: ",Syntax.pretty_typ ctxt iT, Pretty.brk 1,
Pretty.str " is ", Syntax.pretty_typ ctxt iT', Pretty.fbrk,
Pretty.str "Logical: ",Syntax.pretty_typ ctxt cT, Pretty.brk 1,
Pretty.str " is ", Syntax.pretty_typ ctxt cT', Pretty.fbrk
] |> Pretty.string_of |> error
in
check_intf_type_msg msg ctxt iT cT
end
val _ =
Outer_Syntax.local_theory
@{command_keyword "sepref_decl_intf"}
"Declare interface type"
( decl_intf_type_parser >> decl_intf_type_cmd);
end
›
end
subsection ‹Rewriting Inferred Interface Types›
definition map_type_eq :: "'a itself ⇒ 'b itself ⇒ bool"
(infixr "→⇩n⇩t" 60)
where [simp]: "map_type_eq _ _ ≡ True"
lemma map_type_eqI: "map_type_eq L R" by auto
named_theorems_rev map_type_eqs
subsection ‹ML-Code›
context begin
private lemma start_eval: "x ≡ SP x" by auto
private lemma add_eval: "f x ≡ (⤜)$(EVAL$x)$(λ⇩2x. f x)" by auto
private lemma init_mk_arity: "f ≡ id (SP f)" by simp
private lemma add_mk_arity: "id f ≡ (λ⇩2x. id (f$x))" by auto
private lemma finish_mk_arity: "id f ≡ f" by simp
ML ‹
structure Sepref_Combinator_Setup = struct
fun is_valid_abs_op _ (Const _) = true
| is_valid_abs_op ctxt (Free (name,_)) = Variable.is_fixed ctxt name
| is_valid_abs_op _ @{mpat "PR_CONST _"} = true
| is_valid_abs_op _ _ = false
fun mk_itype ctxt t tyt = let
val cert = Thm.cterm_of ctxt
val t = cert t
val tyt = cert tyt
in
Drule.infer_instantiate' ctxt [SOME t, SOME tyt] @{thm itypeI}
end
fun mk_mcomb ctxt t n = let
val T = fastype_of t
val (argsT,_) = strip_type T
val _ = length argsT >= n orelse raise TERM("Too few arguments",[t])
val effT = take n argsT
val orig_ctxt = ctxt
val names = map (fn i => "x"^string_of_int i) (1 upto n)
val (names,ctxt) = Variable.variant_fixes names ctxt
val vars = map Free (names ~~ effT)
val lhs = Autoref_Tagging.list_APP (t,vars)
|> Thm.cterm_of ctxt
fun add_EVAL x thm =
case Thm.prop_of thm of
@{mpat "_ ≡ ?rhs"} => let
val f = lambda x rhs |> Thm.cterm_of ctxt
val x = Thm.cterm_of ctxt x
val eval_thm = Drule.infer_instantiate' ctxt
[SOME f, SOME x] @{thm add_eval}
val thm = @{thm transitive} OF [thm,eval_thm]
in thm end
| _ => raise THM ("mk_mcomb internal: Expected lhs==rhs",~1,[thm])
val thm = Drule.infer_instantiate' ctxt [SOME lhs] @{thm start_eval}
val thm = fold add_EVAL (rev vars) thm
val thm = singleton (Proof_Context.export ctxt orig_ctxt) thm
in
thm
end;
fun mk_arity ctxt t n = let
val t = Thm.cterm_of ctxt t
val thm = Drule.infer_instantiate' ctxt [SOME t] @{thm init_mk_arity}
val add_mk_arity = Conv.fconv_rule (
Refine_Util.ftop_conv (K (Conv.rewr_conv @{thm add_mk_arity})) ctxt)
val thm = funpow n add_mk_arity thm
val thm = Conv.fconv_rule (
Refine_Util.ftop_conv (K (Conv.rewr_conv @{thm finish_mk_arity})) ctxt) thm
in
thm
end;
datatype opkind = PURE | COMB
fun analyze_decl c tyt = let
fun add_tcons_of (Type (name,args)) l = fold add_tcons_of args (name::l)
| add_tcons_of _ l = l
fun all_tcons_of P T = forall P (add_tcons_of T [])
val T = Logic.dest_type tyt
val (argsT,resT) = strip_type T
val _ = forall (all_tcons_of (fn tn => tn <> @{type_name nres})) argsT
orelse raise TYPE (
"Arguments contain nres-type "
^ "(currently not supported by this attribute)",
argsT,[c,tyt])
val kind = case resT of
Type (@{type_name nres},_) => COMB
| T => let
val _ = all_tcons_of (fn tn => tn <> @{type_name nres}) T
orelse raise TYPE (
"Result contains inner nres-type",
argsT,[c,tyt])
in
PURE
end
in (kind,(argsT,resT)) end
fun analyze_itype_thm thm =
case Thm.prop_of thm of
@{mpat (typs) "Trueprop (intf_type ?c (_::?'v_T itself))"} => let
val tyt = Logic.mk_type T
val (kind,(argsT,resT)) = analyze_decl c tyt
in (c,kind,(argsT,resT)) end
| _ => raise THM("Invalid itype-theorem",~1,[thm])
fun generate_basename ctxt t = let
fun fail () = raise TERM ("Basename generation heuristics failed. Specify a basename.",[t])
fun gb (Const (n,_)) =
n |> space_explode "." |> List.last
| gb (@{mpat "PR_CONST ?t"}) = gb t
| gb (t as (_$_)) = let
val h = head_of t
val _ = is_Const h orelse is_Free h orelse fail ()
in
gb h
end
| gb (Free (n,_)) =
if Variable.is_fixed ctxt n then n
else fail ()
| gb _ = fail ()
in
gb t
end
fun map_type_raw ctxt rls T = let
val thy = Proof_Context.theory_of ctxt
fun rewr_this (lhs,rhs) T = let
val env = Sign.typ_match thy (lhs,T) Vartab.empty
in
Envir.norm_type env rhs
end
fun map_Targs f (Type (name,args)) = Type (name,map f args)
| map_Targs _ T = T
fun
rewr_thiss (r::rls) T =
(SOME (rewr_this r T) handle Type.TYPE_MATCH => rewr_thiss rls T)
| rewr_thiss [] _ = NONE
fun
map_type_aux T =
let
val T = map_Targs map_type_aux T
in
case rewr_thiss rls T of
SOME T => map_type_aux T
| NONE => T
end
in
map_type_aux T
end
fun get_nt_rule thm = case Thm.prop_of thm of
@{mpat (typs) "Trueprop (map_type_eq (_::?'v_L itself) (_::?'v_R itself))"} =>
let
val Lvars = Term.add_tvar_namesT L []
val Rvars = Term.add_tvar_namesT R []
val _ = subset (=) (Rvars, Lvars) orelse (
let
val frees = subtract (=) Lvars Rvars
|> map (Term.string_of_vname)
|> Pretty.str_list "[" "]"
|> Pretty.string_of
in
raise THM ("Free variables on RHS: "^frees,~1,[thm])
end)
in
(L,R)
end
| _ => raise THM("No map_type_eq theorem",~1,[thm])
fun map_type ctxt T = let
val rls =
Named_Theorems_Rev.get ctxt @{named_theorems_rev map_type_eqs}
|> map get_nt_rule
in map_type_raw ctxt rls T end
fun read_term_type ts tys lthy = case tys of
SOME ty => let
val ty = Syntax.read_typ lthy ty
val ctxt = Variable.declare_typ ty lthy
val t = Syntax.read_term ctxt ts
val ctxt = Variable.declare_term t ctxt
in
((t,ty),ctxt)
end
| NONE => let
val t = Syntax.read_term lthy ts
val ctxt = Variable.declare_term t lthy
val tyt = fastype_of t |> map_type ctxt |> Logic.mk_type
val tyt = tyt |> singleton (Variable.export_terms ctxt lthy)
val (tyt,ctxt) = yield_singleton (Variable.import_terms true) tyt ctxt
val ty = Logic.dest_type tyt
in
((t,ty),ctxt)
end
fun check_type_intf ctxt Tc Ti = let
fun type2term (TFree (name,_)) = Var (("F"^name,0),HOLogic.unitT)
| type2term (TVar ((name,i),_)) = Var (("V"^name,i),HOLogic.unitT)
| type2term (Type (@{type_name "fun"},[T1,T2])) =
Free ("F",HOLogic.unitT --> HOLogic.unitT --> HOLogic.unitT)
$type2term T1$type2term T2
| type2term (Type (name,argsT)) = let
val args = map type2term argsT
val n = length args
val T = replicate n HOLogic.unitT ---> HOLogic.unitT
val v = Var (("T"^name,0),T)
in list_comb (v, args) end
val c = type2term Tc
val i = type2term Ti
val thy = Proof_Context.theory_of ctxt
in
Pattern.matches thy (i,c)
end
fun import_terms_disj ts ctxt = let
fun exp ctxt t = let
val new_ctxt = Variable.declare_term t ctxt
val t = singleton (Variable.export_terms new_ctxt ctxt) t
in t end
val ts = map (exp ctxt) ts
fun cons_fst f a (l,b) = let val (a,b) = f a b in (a::l,b) end
val (ts,ctxt) = fold_rev (cons_fst (yield_singleton (Variable.import_terms true))) ts ([],ctxt)
in
(ts,ctxt)
end
type reg_thms = {
itype_thm: thm,
arity_thm: thm option,
mcomb_thm: thm option
}
fun cr_reg_thms t ty ctxt = let
val orig_ctxt = ctxt
val tyt = Logic.mk_type ty
val ([t,tyt],ctxt) = import_terms_disj [t,tyt] ctxt
val (kind,(argsT,_)) = analyze_decl t tyt
val n = length argsT
val _ = Sepref_Intf_Types.check_intf_type_err ctxt ty (fastype_of t)
val _ = is_valid_abs_op ctxt t
orelse raise TERM("Malformed abstract operation. Use PR_CONST for complex terms.",[t])
val itype_thm = mk_itype ctxt t tyt
|> singleton (Variable.export ctxt orig_ctxt)
in
case kind of
PURE => {itype_thm = itype_thm, arity_thm = NONE, mcomb_thm = NONE}
| COMB => let
val arity_thm = mk_arity ctxt t n
|> singleton (Variable.export ctxt orig_ctxt)
val mcomb_thm = mk_mcomb ctxt t n
|> singleton (Variable.export ctxt orig_ctxt)
in
{itype_thm = itype_thm, arity_thm = SOME arity_thm, mcomb_thm = SOME mcomb_thm}
end
end
fun gen_pr_const_pat ctxt t =
if is_valid_abs_op ctxt t then (NONE,t)
else
let
val ct = Thm.cterm_of ctxt t
val thm = Drule.infer_instantiate' ctxt [SOME ct] @{thm UNPROTECT_def[symmetric]}
|> Conv.fconv_rule (Conv.arg1_conv (Id_Op.protect_conv ctxt))
in
(SOME thm,@{mk_term "PR_CONST ?t"})
end
fun sepref_register_single basename t ty lthy = let
fun mk_qualified basename q = Binding.qualify true basename (Binding.name q);
fun
do_note _ _ NONE = I
| do_note q attrs (SOME thm) =
Local_Theory.note ((mk_qualified basename q,attrs),[thm]) #> snd
val (pat_thm,t) = gen_pr_const_pat lthy t
val {itype_thm, arity_thm, mcomb_thm} = cr_reg_thms t ty lthy
val lthy = lthy
|> do_note "pat" @{attributes [def_pat_rules]} pat_thm
|> do_note "itype" @{attributes [id_rules]} (SOME itype_thm)
|> do_note "arity" @{attributes [sepref_monadify_arity]} arity_thm
|> do_note "mcomb" @{attributes [sepref_monadify_comb]} mcomb_thm
in
(((arity_thm,mcomb_thm),itype_thm),lthy)
end
fun sepref_register_single_cmd ((basename,ts),tys) lthy = let
val t = Syntax.read_term lthy ts
val ty = map_option (Syntax.read_typ lthy) tys
val ty = case ty of SOME ty => ty | NONE => fastype_of t |> map_type lthy
val basename = case basename of
NONE => generate_basename lthy t
| SOME n => n
val ((_,itype_thm),lthy) = sepref_register_single basename t ty lthy
val _ = Document_Output.pretty_thm lthy itype_thm |> Pretty.string_of |> writeln
in
lthy
end
val sepref_register_cmd = fold sepref_register_single_cmd
val sepref_register_parser = Scan.repeat1 (
Scan.option (Parse.name --| @{keyword ":"})
-- Parse.term
-- Scan.option (@{keyword "::"} |-- Parse.typ)
)
val _ =
Outer_Syntax.local_theory
@{command_keyword "sepref_register"}
"Register operation for sepref"
( sepref_register_parser
>> sepref_register_cmd);
val sepref_register_adhoc_parser = Scan.repeat1 (
Args.term -- Scan.option (Scan.lift (Args.$$$ "::") |-- Args.typ)
)
fun sepref_register_adhoc_single (t,ty) context = let
val ctxt = Context.proof_of context
val ty = case ty of SOME ty => ty | NONE => fastype_of t |> map_type ctxt
val (pat_thm,t) = gen_pr_const_pat ctxt t
val {itype_thm, arity_thm, mcomb_thm} = cr_reg_thms t ty ctxt
fun app _ NONE = I
| app attr (SOME thm) = Thm.apply_attribute attr thm #> snd
in
context
|> app (Named_Theorems_Rev.add @{named_theorems_rev def_pat_rules}) pat_thm
|> app (Named_Theorems_Rev.add @{named_theorems_rev id_rules}) (SOME itype_thm)
|> app (Named_Theorems_Rev.add @{named_theorems_rev sepref_monadify_arity}) arity_thm
|> app (Named_Theorems_Rev.add @{named_theorems_rev sepref_monadify_comb}) mcomb_thm
end
val sepref_register_adhoc = fold sepref_register_adhoc_single
fun sepref_register_adhoc_attr ttys = Thm.declaration_attribute (K (sepref_register_adhoc ttys))
val sepref_register_adhoc_attr_decl = sepref_register_adhoc_parser >> sepref_register_adhoc_attr
end
›
end
attribute_setup sepref_register_adhoc = Sepref_Combinator_Setup.sepref_register_adhoc_attr_decl
‹Register operations in ad-hoc manner. Improper if this gets exported!›
subsection ‹Obsolete Manual Setup Rules›
lemma
mk_mcomb1: "⋀c. c$x1 ≡ (⤜)$(EVAL$x1)$(λ⇩2x1. SP (c$x1))"
and mk_mcomb2: "⋀c. c$x1$x2 ≡ (⤜)$(EVAL$x1)$(λ⇩2x1. (⤜)$(EVAL$x2)$(λ⇩2x2. SP (c$x1$x2)))"
and mk_mcomb3: "⋀c. c$x1$x2$x3 ≡ (⤜)$(EVAL$x1)$(λ⇩2x1. (⤜)$(EVAL$x2)$(λ⇩2x2. (⤜)$(EVAL$x3)$(λ⇩2x3. SP (c$x1$x2$x3))))"
by auto
end