Theory Refine_Imperative_HOL.IICF_List_MsetO
theory IICF_List_MsetO
imports "../Intf/IICF_Multiset"
begin
definition "lmso_assn A ≡ hr_comp (list_assn A) (br mset (λ_. True))"
lemmas [fcomp_norm_unfold] = lmso_assn_def[symmetric]
lemma lmso_is_pure[safe_constraint_rules]: "is_pure A ⟹ is_pure (lmso_assn A)"
unfolding lmso_assn_def by safe_constraint
lemma lmso_empty_aref: "(uncurry0 (RETURN []), uncurry0 (RETURN op_mset_empty)) ∈ unit_rel →⇩f ⟨br mset (λ_. True)⟩nres_rel"
by (auto intro!: frefI nres_relI simp: in_br_conv)
lemma lmso_is_empty_aref: "(RETURN o List.null, RETURN o op_mset_is_empty) ∈ br mset (λ_. True) →⇩f ⟨bool_rel⟩nres_rel"
by (auto intro!: frefI nres_relI simp: in_br_conv List.null_def split: list.split)
lemma lmso_insert_aref: "(uncurry (RETURN oo (#) ), uncurry (RETURN oo op_mset_insert)) ∈ (Id ×⇩r br mset (λ_. True)) →⇩f ⟨br mset (λ_. True)⟩nres_rel"
by (auto intro!: frefI nres_relI simp: in_br_conv)
definition [simp]: "hd_tl l ≡ (hd l, tl l)"
lemma hd_tl_opt[sepref_opt_simps]: "hd_tl l = (case l of (x#xs) ⇒ (x,xs) | _ ⇒ CODE_ABORT (λ_. (hd l, tl l)))"
by (auto split: list.split)
lemma lmso_pick_aref: "(RETURN o hd_tl,op_mset_pick) ∈ [λm. m≠{#}]⇩f br mset (λ_. True) → ⟨Id ×⇩r br mset (λ_. True)⟩nres_rel"
by (auto intro!: frefI nres_relI simp: in_br_conv pw_le_iff refine_pw_simps neq_Nil_conv algebra_simps)
lemma hd_tl_hnr: "(return o hd_tl,RETURN o hd_tl) ∈ [λl. ¬is_Nil l]⇩a (list_assn A)⇧d → prod_assn A (list_assn A)"
apply sepref_to_hoare
subgoal for l li by (cases l; cases li; sep_auto)
done
sepref_decl_impl (no_register) lmso_empty: hn_Nil[to_hfref] uses lmso_empty_aref .
definition [simp]: "op_lmso_empty ≡ op_mset_empty"
sepref_register op_lmso_empty
lemma lmso_fold_custom_empty:
"{#} = op_lmso_empty"
"op_mset_empty = op_lmso_empty"
"mop_mset_empty = RETURN op_lmso_empty"
by auto
lemmas [sepref_fr_rules] = lmso_empty_hnr[folded op_lmso_empty_def]
lemma list_null_hnr: "(return o List.null,RETURN o List.null) ∈ (list_assn A)⇧k →⇩a bool_assn"
apply sepref_to_hoare
subgoal for l li by (cases l; cases li; sep_auto simp: List.null_def)
done
sepref_decl_impl lmso_is_empty: list_null_hnr uses lmso_is_empty_aref .
sepref_decl_impl lmso_insert: hn_Cons[to_hfref] uses lmso_insert_aref .
context notes [simp] = in_br_conv and [split] = list.splits begin
text ‹Dummy lemma, to exloit ‹sepref_decl_impl› automation without parametricity stuff.›
private lemma op_mset_pick_dummy_param: "(op_mset_pick, op_mset_pick) ∈ Id →⇩f ⟨Id⟩nres_rel"
by (auto intro!: frefI nres_relI)
sepref_decl_impl lmso_pick: hd_tl_hnr[FCOMP lmso_pick_aref] uses op_mset_pick_dummy_param by simp
end
end