Theory Refine_Imperative_HOL.IICF_Impl_Heap
section ‹Implementation of Heaps with Arrays›
theory IICF_Impl_Heap
imports
IICF_Abs_Heap
"../IICF_HOL_List"
"../IICF_Array_List"
"HOL-Library.Rewrite"
begin
text ‹We implement the heap data structure by an array.
The implementation is automatically synthesized by the Sepref-tool.
›
subsection ‹Setup of the Sepref-Tool›
context
fixes prio :: "'a::{heap,default} ⇒ 'b::linorder"
begin
interpretation heapstruct prio .
definition "heap_rel A ≡ hr_comp (hr_comp (arl_assn id_assn) heap_rel1) (⟨the_pure A⟩mset_rel)"
end
locale heapstruct_impl =
fixes prio :: "'a::{heap,default} ⇒ 'b::linorder"
begin
sublocale heapstruct prio .
abbreviation "rel ≡ arl_assn id_assn"
sepref_register prio
lemma [sepref_import_param]: "(prio,prio) ∈ Id → Id" by simp
lemma [sepref_import_param]:
"((≤), (≤)::'b ⇒ _) ∈ Id → Id → bool_rel"
"((<), (<)::'b ⇒ _) ∈ Id → Id → bool_rel"
by simp_all
sepref_register
update_op
val_of_op
"PR_CONST prio_of_op"
exch_op
valid
"length::'a list ⇒ _"
append_op
butlast_op
"PR_CONST sink_op"
"PR_CONST swim_op"
"PR_CONST repair_op"
lemma [def_pat_rules]:
"heapstruct.prio_of_op$prio ≡ PR_CONST prio_of_op"
"heapstruct.sink_op$prio ≡ PR_CONST sink_op"
"heapstruct.swim_op$prio ≡ PR_CONST swim_op"
"heapstruct.repair_op$prio ≡ PR_CONST repair_op"
by simp_all
end
context
fixes prio :: "'a::{heap,default} ⇒ 'b::linorder"
begin
interpretation heapstruct_impl prio .
subsection ‹Synthesis of operations›
text ‹Note that we have to repeat some boilerplate per operation.
It is future work to add more automation here.›
sepref_definition update_impl is "uncurry2 update_op" :: "rel⇧d *⇩a nat_assn⇧k *⇩a id_assn⇧k →⇩a rel"
unfolding update_op_def[abs_def]
by sepref
lemmas [sepref_fr_rules] = update_impl.refine
sepref_definition val_of_impl is "uncurry val_of_op" :: "rel⇧k *⇩a nat_assn⇧k →⇩a id_assn"
unfolding val_of_op_def[abs_def]
by sepref
lemmas [sepref_fr_rules] = val_of_impl.refine
sepref_definition exch_impl is "uncurry2 exch_op" :: "rel⇧d *⇩a nat_assn⇧k *⇩a nat_assn⇧k →⇩a rel"
unfolding exch_op_def[abs_def]
by sepref
lemmas [sepref_fr_rules] = exch_impl.refine
sepref_definition valid_impl is "uncurry (RETURN oo valid)" :: "rel⇧k *⇩a nat_assn⇧k →⇩a bool_assn"
unfolding valid_def[abs_def]
by sepref
lemmas [sepref_fr_rules] = valid_impl.refine
sepref_definition prio_of_impl is "uncurry (PR_CONST prio_of_op)" :: "rel⇧k *⇩a nat_assn⇧k →⇩a id_assn"
unfolding prio_of_op_def[abs_def] PR_CONST_def
by sepref
lemmas [sepref_fr_rules] = prio_of_impl.refine
sepref_definition swim_impl is "uncurry (PR_CONST swim_op)" :: "rel⇧d *⇩a nat_assn⇧k →⇩a rel"
unfolding swim_op_def[abs_def] parent_def PR_CONST_def
by sepref
lemmas [sepref_fr_rules] = swim_impl.refine
sepref_definition sink_impl is "uncurry (PR_CONST sink_op)" :: "rel⇧d *⇩a nat_assn⇧k →⇩a rel"
unfolding sink_op_opt_def[abs_def] sink_op_opt_eq[symmetric,abs_def] PR_CONST_def
by sepref
lemmas [sepref_fr_rules] = sink_impl.refine
lemmas [fcomp_norm_unfold] = heap_rel_def[symmetric]
sepref_definition empty_impl is "uncurry0 empty_op" :: "unit_assn⇧k →⇩a rel"
unfolding empty_op_def arl.fold_custom_empty
by sepref
sepref_decl_impl (no_register) heap_empty: empty_impl.refine[FCOMP empty_op_refine] .
sepref_definition is_empty_impl is "is_empty_op" :: "rel⇧k →⇩a bool_assn"
unfolding is_empty_op_def[abs_def]
by sepref
sepref_decl_impl heap_is_empty: is_empty_impl.refine[FCOMP is_empty_op_refine] .
sepref_definition insert_impl is "uncurry insert_op" :: "id_assn⇧k *⇩a rel⇧d →⇩a rel"
unfolding insert_op_def[abs_def] append_op_def
by sepref
sepref_decl_impl heap_insert: insert_impl.refine[FCOMP insert_op_refine] .
sepref_definition pop_min_impl is "pop_min_op" :: "rel⇧d →⇩a prod_assn id_assn rel"
unfolding pop_min_op_def[abs_def] butlast_op_def
by sepref
sepref_decl_impl (no_mop) heap_pop_min: pop_min_impl.refine[FCOMP pop_min_op_refine] .
sepref_definition peek_min_impl is "peek_min_op" :: "rel⇧k →⇩a id_assn"
unfolding peek_min_op_def[abs_def]
by sepref
sepref_decl_impl (no_mop) heap_peek_min: peek_min_impl.refine[FCOMP peek_min_op_refine] .
end
definition [simp]: "heap_custom_empty ≡ op_mset_empty"
interpretation heap: mset_custom_empty
"heap_rel prio A" empty_impl heap_custom_empty for prio A
apply unfold_locales
apply (rule heap_empty_hnr)
by simp
subsection ‹Regression Test›
export_code empty_impl is_empty_impl insert_impl pop_min_impl peek_min_impl checking SML
definition "sort_by_prio prio l ≡ do {
q ← nfoldli l (λ_. True) (λx q. mop_mset_insert x q) heap_custom_empty;
(l,q) ← WHILET (λ(l,q). ¬op_mset_is_empty q) (λ(l,q). do {
(x,q) ← mop_prio_pop_min prio q;
RETURN (l@[x],q)
}) (op_arl_empty,q);
RETURN l
}"
context fixes prio:: "'a::{default,heap} ⇒ 'b::linorder" begin
sepref_definition sort_impl is
"sort_by_prio prio" :: "(list_assn (id_assn::'a::{default,heap} ⇒ _))⇧k →⇩a arl_assn id_assn"
unfolding sort_by_prio_def[abs_def]
by sepref
end
definition "sort_impl_nat ≡ sort_impl (id::nat⇒nat) "
export_code sort_impl checking SML
ML ‹
@{code sort_impl_nat} (map @{code nat_of_integer} [4,1,7,2,3,9,8,62]) ()
›
hide_const sort_impl sort_impl_nat
hide_fact sort_impl_def sort_impl_nat_def sort_impl.refine
end