Theory Refine_Imperative_HOL.Concl_Pres_Clarification
theory Concl_Pres_Clarification
imports Main
begin
text ‹Clarification and clarsimp that preserve the structure of
the subgoal's conclusion, i.e., neither solve it, nor swap it
with premises, as, eg, @{thm [source] notE} does.
›
ML ‹
local
open Classical
fun is_cp_brl (is_elim,thm) = let
val prems = Thm.prems_of thm
val nprems = length prems
val concl = Thm.concl_of thm
in
(if is_elim then nprems=2 else nprems=1) andalso let
val lprem_concl = hd (rev prems)
|> Logic.strip_assums_concl
in
concl aconv lprem_concl
end
end
val not_elim = @{thm notE}
val hyp_subst_tacs = [Hypsubst.hyp_subst_tac]
fun eq_contr_tac ctxt i = ematch_tac ctxt [not_elim] i THEN eq_assume_tac i;
fun eq_assume_contr_tac ctxt = eq_assume_tac ORELSE' eq_contr_tac ctxt;
fun cp_bimatch_from_nets_tac ctxt =
biresolution_from_nets_tac ctxt (order_list o filter (is_cp_brl o snd)) true;
in
fun cp_clarify_step_tac ctxt =
let val {safep_netpair, ...} = (rep_cs o claset_of) ctxt in
appSWrappers ctxt
(FIRST'
[eq_assume_contr_tac ctxt,
FIRST' (map (fn tac => tac ctxt) hyp_subst_tacs),
cp_bimatch_from_nets_tac ctxt safep_netpair
])
end;
fun cp_clarify_tac ctxt = SELECT_GOAL (REPEAT_DETERM (cp_clarify_step_tac ctxt 1));
fun cp_clarsimp_tac ctxt =
Simplifier.safe_asm_full_simp_tac ctxt THEN_ALL_NEW
cp_clarify_tac (addSss ctxt);
end
›
method_setup cp_clarify = ‹
(Classical.cla_method' (CHANGED_PROP oo cp_clarify_tac))
›
method_setup cp_clarsimp = ‹let
fun clasimp_method' tac =
Method.sections clasimp_modifiers >> K (SIMPLE_METHOD' o tac);
in
clasimp_method' (CHANGED_PROP oo cp_clarsimp_tac)
end›
end