Theory Native_Word.Code_Target_Int_Bit
chapter ‹Implementation of bit operations on int by target language operations›
theory Code_Target_Int_Bit
imports
Code_Target_Integer_Bit
"HOL-Library.Code_Target_Int"
begin
context
includes bit_operations_syntax
begin
declare [[code drop:
"lsb :: int ⇒ _" int_of_integer_symbolic
]]
lemma [code_unfold]:
‹of_bool (odd i) = i AND 1› for i :: int
by (simp add: and_one_eq mod2_eq_if)
lemma [code_unfold]:
‹bit x n ⟷ x AND (push_bit n 1) ≠ 0› for x :: int
by (fact bit_iff_and_push_bit_not_eq_0)
context
includes integer.lifting
begin
lemma lsb_int_code [code]:
"lsb (int_of_integer x) = lsb x"
by transfer simp
lemma set_bit_int_code [code]:
"set_bit (int_of_integer x) n b = int_of_integer (set_bit x n b)"
by transfer simp
lemma int_of_integer_symbolic_code [code]:
"int_of_integer_symbolic = int_of_integer"
by (simp add: int_of_integer_symbolic_def)
context
begin
qualified definition even :: ‹int ⇒ bool›
where [code_abbrev]: ‹even = Parity.even›
end
lemma [code]:
‹Code_Target_Int_Bit.even i ⟷ i AND 1 = 0›
by (simp add: Code_Target_Int_Bit.even_def even_iff_mod_2_eq_zero and_one_eq)
lemma bin_rest_code:
"int_of_integer i div 2 = int_of_integer (bin_rest_integer i)"
by transfer simp
end
end
end