Theory Automatic_Refinement.Autoref_Gen_Algo
section ‹Infrastructure for Generic Algorithms›
theory Autoref_Gen_Algo
imports Autoref_Translate
begin
definition [simp, autoref_tag_defs]: "GEN_ALGO_tag P == P"
lemma GEN_ALGO_tagI: "P ==> GEN_ALGO_tag P" by simp
abbreviation "SIDE_GEN_ALGO P == PREFER_tag (GEN_ALGO_tag P)"
ML ‹
structure Autoref_Gen_Algo = struct
fun transform_ga_rule context rl = let
val ctxt = Context.proof_of context
fun warn msg = Pretty.block [
Pretty.str msg,
Pretty.brk 1,
Pretty.str "(",
Thm.pretty_thm ctxt rl,
Pretty.str ")"
]
|> Pretty.string_of |> warning
fun is_side_prem @{mpat "Trueprop (PREFER_tag _)"} = true
| is_side_prem @{mpat "Trueprop (DEFER_tag _)"} = true
| is_side_prem _ = false
in
if exists is_side_prem (Thm.prems_of rl) then
warn ("autoref_ga_rules: SIDE condition premise not allowed here")
else ()
;
case Thm.concl_of rl of
@{mpat "Trueprop ((_,_)∈_)"} =>
warn ("autoref_ga_rules: Refinement condition conclusion. Did you"
^" mean an autoref_rule?")
| _ => ()
;
[rl]
end
structure ga_side_thms = Named_Sorted_Thms (
val name = @{binding autoref_ga_rules}
val description = "Additional rules for generic algorithm side conditions"
val sort = K I
val transform = transform_ga_rule
)
fun side_ga_tac ctxt = resolve_tac ctxt (ga_side_thms.get ctxt)
fun side_ga_op_tac ctxt =
SOLVED' (Autoref_Tacticals.REPEAT_ON_SUBGOAL
(Autoref_Translate.trans_step_tac ctxt))
val setup = ga_side_thms.setup
fun decl_setup phi = I
#> Tagged_Solver.declare_solver @{thms GEN_ALGO_tagI} @{binding GEN_ALGO}
"Autoref: Generic algorithm side condition solver"
( side_ga_tac) phi
#> Autoref_Phases.declare_solver @{thms GEN_OP_tagI} @{binding GEN_OP}
"Autoref: Generic algorithm operation instantiation"
( side_ga_op_tac) phi
end
›
setup Autoref_Gen_Algo.setup
declaration Autoref_Gen_Algo.decl_setup
end