Theory Automatic_Refinement.Anti_Unification
section ‹Anti-Unification›
theory Anti_Unification
imports Refine_Util
begin
text ‹We implement a simple anti-unification.
Currently, we do not handle lambdas, nor sorts, and avoid
higher-order variables, i.e.,
f x and g x will be unified to ?v, not ?v x, and existing higher-order
patterns will be collapsed, e.g.: ?f x and ?f x will become ?v.
›
ML ‹
signature ANTI_UNIFICATION = sig
type typ_env
type term_env
type env = typ_env * term_env
val empty_typ: typ_env
val empty_term: term_env
val empty: env
val anti_unifyT: typ * typ -> typ_env -> typ * typ_env
val anti_unify_env: term * term -> env -> term * env
val anti_unify: term * term -> term
val anti_unify_list: term list -> term
val specialize_tac: Proof.context -> thm list -> tactic'
val specialize_net_tac: Proof.context -> (int * thm) Net.net -> tactic'
end
structure Anti_Unification :ANTI_UNIFICATION = struct
structure Term2tab = Table (
type key = term * term
val ord = prod_ord Term_Ord.fast_term_ord Term_Ord.fast_term_ord
);
structure Typ2tab = Table (
type key = typ * typ
val ord = prod_ord Term_Ord.typ_ord Term_Ord.typ_ord
);
type typ_env = (typ Typ2tab.table * int)
type term_env = (term Term2tab.table * int)
type env = typ_env * term_env
val empty_typ = (Typ2tab.empty,0)
val empty_term = (Term2tab.empty,0)
val empty = (empty_typ,empty_term)
fun tvar_pair p (vtab,idx) =
case Typ2tab.lookup vtab p of
NONE => let
val tv = TVar (("T",idx),[])
val vtab = Typ2tab.update (p,tv) vtab
in
(tv,(vtab,idx+1))
end
| SOME tv => (tv,(vtab,idx))
fun anti_unifyT (TFree v1, TFree v2) dt =
if v1 = v2 then (TFree v1,dt)
else tvar_pair (TFree v1, TFree v2) dt
| anti_unifyT (p as (Type (n1,l1), Type (n2,l2))) dt =
if n1 = n2 andalso (length l1 = length l2) then
let
val (l,dt) = fold_map anti_unifyT (l1~~l2) dt
in (Type (n1,l),dt) end
else
tvar_pair p dt
| anti_unifyT p dt = tvar_pair p dt
fun var_pair p (tdt,(vtab,idx)) =
case Term2tab.lookup vtab p of
NONE => let
val (T,tdt) = anti_unifyT (apply2 fastype_of p) tdt
val v = Var (("v",idx),T)
val vtab = Term2tab.update (p,v) vtab
in
(v,(tdt,(vtab,idx+1)))
end
| SOME v => (v,(tdt,(vtab,idx)))
fun anti_unify_env (p as (Free (n1,T1), Free (n2,T2))) (tdt,dt) =
if n1 = n2 then
let
val (T,tdt) = anti_unifyT (T1,T2) tdt
in (Free (n1,T),(tdt,dt)) end
else
var_pair p (tdt,dt)
| anti_unify_env (p as (Const (n1,T1), Const (n2,T2))) (tdt,dt) =
if n1 = n2 then
let
val (T,tdt) = anti_unifyT (T1,T2) tdt
in (Const (n1,T),(tdt,dt)) end
else
var_pair p (tdt,dt)
| anti_unify_env (p as (f1$x1,f2$x2)) dtp =
let
val (f,dtp) = anti_unify_env (f1,f2) dtp
in
if is_Var f then
var_pair p dtp
else let
val (x,dtp) = anti_unify_env (x1,x2) dtp
in (f$x,dtp) end
end
| anti_unify_env p dtp = var_pair p dtp
fun anti_unify p = anti_unify_env p empty |> #1
fun anti_unify_list l = let
fun f [] _ = raise TERM ("anti_unify_list: Empty",[])
| f [t] dt = (t,dt)
| f (t1::t2::ts) dt = let
val (t,dt) = anti_unify_env (t1,t2) dt
in f (t::ts) dt end
in
f l empty |> #1
end
local
fun specialize_aux_tac ctxt get_candidates i st = let
val maxidx = Thm.maxidx_of st
val concl = Logic.concl_of_goal (Thm.prop_of st) i
val pre_candidates = get_candidates concl
|> map (fn thm =>
let
val tidx = Thm.maxidx_of thm
val t = Thm.incr_indexes (maxidx + 1) thm |> Thm.concl_of
in (maxidx + tidx + 1,t) end)
fun unifies (idx,t)
= can (Pattern.unify (Context.Proof ctxt) (t, concl)) (Envir.empty idx)
val candidates = filter unifies pre_candidates |> map #2
in
case candidates of
[] => Seq.single st
| _ => let
val pattern = anti_unify_list candidates
|> Thm.cterm_of ctxt |> Thm.trivial
in
resolve_tac ctxt [pattern] i st
end
end
in
fun specialize_tac ctxt thms = let
fun get_candidates concl =
filter (fn thm => Term.could_unify (Thm.concl_of thm, concl)) thms
in
specialize_aux_tac ctxt get_candidates
end
fun specialize_net_tac ctxt net = let
fun get_candidates concl = Net.unify_term net concl |> map #2
in
specialize_aux_tac ctxt get_candidates
end
end
end
›
end