Theory Polynomial_Record_Based
subsection ‹Record Based Version›
text ‹We provide an implementation for polynomials which may be parametrized
by the ring- or field-operations. These don't have to be type-based!›
subsubsection ‹Definitions›
theory Polynomial_Record_Based
imports
Arithmetic_Record_Based
Karatsuba_Multiplication
begin
context
fixes ops :: "'i arith_ops_record" (structure)
begin
private abbreviation (input) zero where "zero ≡ arith_ops_record.zero ops"
private abbreviation (input) one where "one ≡ arith_ops_record.one ops"
private abbreviation (input) plus where "plus ≡ arith_ops_record.plus ops"
private abbreviation (input) times where "times ≡ arith_ops_record.times ops"
private abbreviation (input) minus where "minus ≡ arith_ops_record.minus ops"
private abbreviation (input) uminus where "uminus ≡ arith_ops_record.uminus ops"
private abbreviation (input) divide where "divide ≡ arith_ops_record.divide ops"
private abbreviation (input) inverse where "inverse ≡ arith_ops_record.inverse ops"
private abbreviation (input) modulo where "modulo ≡ arith_ops_record.modulo ops"
private abbreviation (input) normalize where "normalize ≡ arith_ops_record.normalize ops"
private abbreviation (input) unit_factor where "unit_factor ≡ arith_ops_record.unit_factor ops"
private abbreviation (input) DP where "DP ≡ arith_ops_record.DP ops"
definition is_poly :: "'i list ⇒ bool" where
"is_poly xs ⟷ list_all DP xs ∧ no_trailing (HOL.eq zero) xs"
definition cCons_i :: "'i ⇒ 'i list ⇒ 'i list"
where
"cCons_i x xs = (if xs = [] ∧ x = zero then [] else x # xs)"
fun plus_poly_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"plus_poly_i (x # xs) (y # ys) = cCons_i (plus x y) (plus_poly_i xs ys)"
| "plus_poly_i xs [] = xs"
| "plus_poly_i [] ys = ys"
definition uminus_poly_i :: "'i list ⇒ 'i list" where
[code_unfold]: "uminus_poly_i = map uminus"
fun minus_poly_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"minus_poly_i (x # xs) (y # ys) = cCons_i (minus x y) (minus_poly_i xs ys)"
| "minus_poly_i xs [] = xs"
| "minus_poly_i [] ys = uminus_poly_i ys"
abbreviation (input) zero_poly_i :: "'i list" where
"zero_poly_i ≡ []"
definition one_poly_i :: "'i list" where
[code_unfold]: "one_poly_i = [one]"
definition smult_i :: "'i ⇒ 'i list ⇒ 'i list" where
"smult_i a pp = (if a = zero then [] else strip_while ((=) zero) (map (times a) pp))"
definition sdiv_i :: "'i list ⇒ 'i ⇒ 'i list" where
"sdiv_i pp a = (strip_while ((=) zero) (map (λ c. divide c a) pp))"
definition poly_of_list_i :: "'i list ⇒ 'i list" where
"poly_of_list_i = strip_while ((=) zero)"
fun coeffs_minus_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"coeffs_minus_i (x # xs) (y # ys) = (minus x y # coeffs_minus_i xs ys)"
| "coeffs_minus_i xs [] = xs"
| "coeffs_minus_i [] ys = map uminus ys"
definition monom_mult_i :: "nat ⇒ 'i list ⇒ 'i list" where
"monom_mult_i n xs = (if xs = [] then xs else replicate n zero @ xs)"
fun karatsuba_main_i :: "'i list ⇒ nat ⇒ 'i list ⇒ nat ⇒ 'i list" where
"karatsuba_main_i f n g m = (if n ≤ karatsuba_lower_bound ∨ m ≤ karatsuba_lower_bound then
let ff = poly_of_list_i f in foldr (λa p. plus_poly_i (smult_i a ff) (cCons_i zero p)) g zero_poly_i
else let n2 = n div 2 in
if m > n2 then (case split_at n2 f of
(f0,f1) ⇒ case split_at n2 g of
(g0,g1) ⇒ let
p1 = karatsuba_main_i f1 (n - n2) g1 (m - n2);
p2 = karatsuba_main_i (coeffs_minus_i f1 f0) n2 (coeffs_minus_i g1 g0) n2;
p3 = karatsuba_main_i f0 n2 g0 n2
in plus_poly_i (monom_mult_i (n2 + n2) p1)
(plus_poly_i (monom_mult_i n2 (plus_poly_i (minus_poly_i p1 p2) p3)) p3))
else case split_at n2 f of
(f0,f1) ⇒ let
p1 = karatsuba_main_i f1 (n - n2) g m;
p2 = karatsuba_main_i f0 n2 g m
in plus_poly_i (monom_mult_i n2 p1) p2)"
definition times_poly_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"times_poly_i f g ≡ (let n = length f; m = length g
in (if n ≤ karatsuba_lower_bound ∨ m ≤ karatsuba_lower_bound then if n ≤ m then
foldr (λa p. plus_poly_i (smult_i a g) (cCons_i zero p)) f zero_poly_i else
foldr (λa p. plus_poly_i (smult_i a f) (cCons_i zero p)) g zero_poly_i else
if n ≤ m then karatsuba_main_i g m f n else karatsuba_main_i f n g m))"
definition coeff_i :: "'i list ⇒ nat ⇒ 'i" where
"coeff_i = nth_default zero"
definition degree_i :: "'i list ⇒ nat" where
"degree_i pp ≡ length pp - 1"
definition lead_coeff_i :: "'i list ⇒ 'i" where
"lead_coeff_i pp = (case pp of [] ⇒ zero | _ ⇒ last pp)"
definition monic_i :: "'i list ⇒ bool" where
"monic_i pp = (lead_coeff_i pp = one)"
fun minus_poly_rev_list_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"minus_poly_rev_list_i (x # xs) (y # ys) = (minus x y) # (minus_poly_rev_list_i xs ys)"
| "minus_poly_rev_list_i xs [] = xs"
| "minus_poly_rev_list_i [] (y # ys) = []"
fun divmod_poly_one_main_i :: "'i list ⇒ 'i list ⇒ 'i list
⇒ nat ⇒ 'i list × 'i list" where
"divmod_poly_one_main_i q r d (Suc n) = (let
a = hd r;
qqq = cCons_i a q;
rr = tl (if a = zero then r else minus_poly_rev_list_i r (map (times a) d))
in divmod_poly_one_main_i qqq rr d n)"
| "divmod_poly_one_main_i q r d 0 = (q,r)"
fun mod_poly_one_main_i :: "'i list ⇒ 'i list
⇒ nat ⇒ 'i list" where
"mod_poly_one_main_i r d (Suc n) = (let
a = hd r;
rr = tl (if a = zero then r else minus_poly_rev_list_i r (map (times a) d))
in mod_poly_one_main_i rr d n)"
| "mod_poly_one_main_i r d 0 = r"
definition pdivmod_monic_i :: "'i list ⇒ 'i list ⇒ 'i list × 'i list" where
"pdivmod_monic_i cf cg ≡ case
divmod_poly_one_main_i [] (rev cf) (rev cg) (1 + length cf - length cg)
of (q,r) ⇒ (poly_of_list_i q, poly_of_list_i (rev r))"
definition dupe_monic_i :: "'i list ⇒ 'i list ⇒ 'i list ⇒ 'i list ⇒ 'i list ⇒ 'i list × 'i list" where
"dupe_monic_i D H S T U = (case pdivmod_monic_i (times_poly_i T U) D of (Q,R) ⇒
(plus_poly_i (times_poly_i S U) (times_poly_i H Q), R))"
definition of_int_poly_i :: "int poly ⇒ 'i list" where
"of_int_poly_i f = map (arith_ops_record.of_int ops) (coeffs f)"
definition to_int_poly_i :: "'i list ⇒ int poly" where
"to_int_poly_i f = poly_of_list (map (arith_ops_record.to_int ops) f)"
definition dupe_monic_i_int :: "int poly ⇒ int poly ⇒ int poly ⇒ int poly ⇒ int poly ⇒ int poly × int poly" where
"dupe_monic_i_int D H S T = (let
d = of_int_poly_i D;
h = of_int_poly_i H;
s = of_int_poly_i S;
t = of_int_poly_i T
in (λ U. case dupe_monic_i d h s t (of_int_poly_i U) of
(D',H') ⇒ (to_int_poly_i D', to_int_poly_i H')))"
definition div_field_poly_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"div_field_poly_i cf cg = (
if cg = [] then zero_poly_i
else let ilc = inverse (last cg); ch = map (times ilc) cg;
q = fst (divmod_poly_one_main_i [] (rev cf) (rev ch) (1 + length cf - length cg))
in poly_of_list_i ((map (times ilc) q)))"
definition mod_field_poly_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"mod_field_poly_i cf cg = (
if cg = [] then cf
else let ilc = inverse (last cg); ch = map (times ilc) cg;
r = mod_poly_one_main_i (rev cf) (rev ch) (1 + length cf - length cg)
in poly_of_list_i (rev r))"
definition normalize_poly_i :: "'i list ⇒ 'i list" where
"normalize_poly_i xs = smult_i (inverse (unit_factor (lead_coeff_i xs))) xs"
definition unit_factor_poly_i :: "'i list ⇒ 'i list" where
"unit_factor_poly_i xs = cCons_i (unit_factor (lead_coeff_i xs)) []"
fun pderiv_main_i :: "'i ⇒ 'i list ⇒ 'i list" where
"pderiv_main_i f (x # xs) = cCons_i (times f x) (pderiv_main_i (plus f one) xs)"
| "pderiv_main_i f [] = []"
definition pderiv_i :: "'i list ⇒ 'i list" where
"pderiv_i xs = pderiv_main_i one (tl xs)"
definition dvd_poly_i :: "'i list ⇒ 'i list ⇒ bool" where
"dvd_poly_i xs ys = (∃ zs. is_poly zs ∧ ys = times_poly_i xs zs)"
definition irreducible_i :: "'i list ⇒ bool" where
"irreducible_i xs = (degree_i xs ≠ 0 ∧
(∀q r. is_poly q ⟶ is_poly r ⟶ degree_i q < degree_i xs ⟶ degree_i r < degree_i xs
⟶ xs ≠ times_poly_i q r))"
definition poly_ops :: "'i list arith_ops_record" where
"poly_ops ≡ Arith_Ops_Record
zero_poly_i
one_poly_i
plus_poly_i
times_poly_i
minus_poly_i
uminus_poly_i
div_field_poly_i
(λ _. [])
mod_field_poly_i
normalize_poly_i
unit_factor_poly_i
(λ i. if i = 0 then [] else [arith_ops_record.of_int ops i])
(λ _. 0)
is_poly"
definition gcd_poly_i :: "'i list ⇒ 'i list ⇒ 'i list" where
"gcd_poly_i = arith_ops.gcd_eucl_i poly_ops"
definition euclid_ext_poly_i :: "'i list ⇒ 'i list ⇒ ('i list × 'i list) × 'i list" where
"euclid_ext_poly_i = arith_ops.euclid_ext_i poly_ops"
definition separable_i :: "'i list ⇒ bool" where
"separable_i xs ≡ gcd_poly_i xs (pderiv_i xs) = one_poly_i"
end
subsubsection ‹Properties›
definition pdivmod_monic :: "'a::comm_ring_1 poly ⇒ 'a poly ⇒ 'a poly × 'a poly" where
"pdivmod_monic f g ≡ let cg = coeffs g; cf = coeffs f;
(q, r) = divmod_poly_one_main_list [] (rev cf) (rev cg) (1 + length cf - length cg)
in (poly_of_list q, poly_of_list (rev r))"
lemma coeffs_smult': "coeffs (smult a p) = (if a = 0 then [] else strip_while ((=) 0) (map (Groups.times a) (coeffs p)))"
by (simp add: coeffs_map_poly smult_conv_map_poly)
lemma coeffs_sdiv: "coeffs (sdiv_poly p a) = (strip_while ((=) 0) (map (λ x. x div a) (coeffs p)))"
unfolding sdiv_poly_def by (rule coeffs_map_poly)
lifting_forget poly.lifting
context ring_ops
begin
definition poly_rel :: "'i list ⇒ 'a poly ⇒ bool" where
"poly_rel x x' ⟷ list_all2 R x (coeffs x')"
lemma right_total_poly_rel[transfer_rule]:
"right_total poly_rel"
using list.right_total_rel[of R] right_total unfolding poly_rel_def right_total_def by auto
lemma poly_rel_inj: "poly_rel x y ⟹ poly_rel x z ⟹ y = z"
using list.bi_unique_rel[OF bi_unique] unfolding poly_rel_def coeffs_eq_iff bi_unique_def by auto
lemma bi_unique_poly_rel[transfer_rule]: "bi_unique poly_rel"
using list.bi_unique_rel[OF bi_unique] unfolding poly_rel_def bi_unique_def coeffs_eq_iff by auto
lemma Domainp_is_poly [transfer_domain_rule]:
"Domainp poly_rel = is_poly ops"
unfolding poly_rel_def [abs_def] is_poly_def [abs_def]
proof (intro ext iffI, unfold Domainp_iff)
note DPR = fun_cong [OF list.Domainp_rel [of R, unfolded DPR],
unfolded Domainp_iff]
let ?no_trailing = "no_trailing (HOL.eq zero)"
fix xs
have no_trailing: "no_trailing (HOL.eq 0) xs' ⟷ ?no_trailing xs"
if "list_all2 R xs xs'" for xs'
proof (cases xs rule: rev_cases)
case Nil
with that show ?thesis
by simp
next
case (snoc ys y)
with that have "xs' ≠ []"
by auto
then obtain ys' y' where "xs' = ys' @ [y']"
by (cases xs' rule: rev_cases) simp_all
with that snoc show ?thesis
by simp (meson bi_unique bi_unique_def zero)
qed
let ?DPR = "arith_ops_record.DP ops"
{
assume "∃x'. list_all2 R xs (coeffs x')"
then obtain xs' where *: "list_all2 R xs (coeffs xs')" by auto
with DPR [of xs] have "list_all ?DPR xs" by auto
then show "list_all ?DPR xs ∧ ?no_trailing xs"
using no_trailing [OF *] by simp
}
{
assume "list_all ?DPR xs ∧ ?no_trailing xs"
with DPR [of xs] obtain xs' where *: "list_all2 R xs xs'" and "?no_trailing xs"
by auto
from no_trailing [OF *] this(2) have "no_trailing (HOL.eq 0) xs'"
by simp
hence "coeffs (poly_of_list xs') = xs'" unfolding poly_of_list_impl by auto
with * show "∃x'. list_all2 R xs (coeffs x')" by metis
}
qed
lemma poly_rel_zero[transfer_rule]: "poly_rel zero_poly_i 0"
unfolding poly_rel_def by auto
lemma poly_rel_one[transfer_rule]: "poly_rel (one_poly_i ops) 1"
unfolding poly_rel_def one_poly_i_def by (simp add: one)
lemma poly_rel_cCons[transfer_rule]: "(R ===> list_all2 R ===> list_all2 R) (cCons_i ops) cCons"
unfolding cCons_i_def[abs_def] cCons_def[abs_def]
by transfer_prover
lemma poly_rel_pCons[transfer_rule]: "(R ===> poly_rel ===> poly_rel) (cCons_i ops) pCons"
unfolding rel_fun_def poly_rel_def coeffs_pCons_eq_cCons cCons_def[symmetric]
using poly_rel_cCons[unfolded rel_fun_def] by auto
lemma poly_rel_eq[transfer_rule]: "(poly_rel ===> poly_rel ===> (=)) (=) (=)"
unfolding poly_rel_def[abs_def] coeffs_eq_iff[abs_def] rel_fun_def
by (metis bi_unique bi_uniqueDl bi_uniqueDr list.bi_unique_rel)
lemma poly_rel_plus[transfer_rule]: "(poly_rel ===> poly_rel ===> poly_rel) (plus_poly_i ops) (+)"
proof (intro rel_funI)
fix x1 y1 x2 y2
assume "poly_rel x1 x2" and "poly_rel y1 y2"
thus "poly_rel (plus_poly_i ops x1 y1) (x2 + y2)"
unfolding poly_rel_def coeffs_eq_iff coeffs_plus_eq_plus_coeffs
proof (induct x1 y1 arbitrary: x2 y2 rule: plus_poly_i.induct)
case (1 x1 xs1 y1 ys1 X2 Y2)
from 1(2) obtain x2 xs2 where X2: "coeffs X2 = x2 # coeffs xs2"
by (cases X2, auto simp: cCons_def split: if_splits)
from 1(3) obtain y2 ys2 where Y2: "coeffs Y2 = y2 # coeffs ys2"
by (cases Y2, auto simp: cCons_def split: if_splits)
from 1(2) 1(3) have [transfer_rule]: "R x1 x2" "R y1 y2"
and *: "list_all2 R xs1 (coeffs xs2)" "list_all2 R ys1 (coeffs ys2)" unfolding X2 Y2 by auto
note [transfer_rule] = 1(1)[OF *]
show ?case unfolding X2 Y2 by simp transfer_prover
next
case (2 xs1 xs2 ys2)
thus ?case by (cases "coeffs xs2", auto)
next
case (3 xs2 y1 ys1 Y2)
thus ?case by (cases Y2, auto simp: cCons_def)
qed
qed
lemma poly_rel_uminus[transfer_rule]: "(poly_rel ===> poly_rel) (uminus_poly_i ops) Groups.uminus"
proof (intro rel_funI)
fix x y
assume "poly_rel x y"
hence [transfer_rule]: "list_all2 R x (coeffs y)" unfolding poly_rel_def .
show "poly_rel (uminus_poly_i ops x) (-y)"
unfolding poly_rel_def coeffs_uminus uminus_poly_i_def by transfer_prover
qed
lemma poly_rel_minus[transfer_rule]: "(poly_rel ===> poly_rel ===> poly_rel) (minus_poly_i ops) (-)"
proof (intro rel_funI)
fix x1 y1 x2 y2
assume "poly_rel x1 x2" and "poly_rel y1 y2"
thus "poly_rel (minus_poly_i ops x1 y1) (x2 - y2)"
unfolding diff_conv_add_uminus
unfolding poly_rel_def coeffs_eq_iff coeffs_plus_eq_plus_coeffs coeffs_uminus
proof (induct x1 y1 arbitrary: x2 y2 rule: minus_poly_i.induct)
case (1 x1 xs1 y1 ys1 X2 Y2)
from 1(2) obtain x2 xs2 where X2: "coeffs X2 = x2 # coeffs xs2"
by (cases X2, auto simp: cCons_def split: if_splits)
from 1(3) obtain y2 ys2 where Y2: "coeffs Y2 = y2 # coeffs ys2"
by (cases Y2, auto simp: cCons_def split: if_splits)
from 1(2) 1(3) have [transfer_rule]: "R x1 x2" "R y1 y2"
and *: "list_all2 R xs1 (coeffs xs2)" "list_all2 R ys1 (coeffs ys2)" unfolding X2 Y2 by auto
note [transfer_rule] = 1(1)[OF *]
show ?case unfolding X2 Y2 by simp transfer_prover
next
case (2 xs1 xs2 ys2)
thus ?case by (cases "coeffs xs2", auto)
next
case (3 xs2 y1 ys1 Y2)
from 3(1) have id0: "coeffs ys1 = coeffs 0" by (cases ys1, auto)
have id1: "minus_poly_i ops [] (xs2 # y1) = uminus_poly_i ops (xs2 # y1)" by simp
from 3(2) have [transfer_rule]: "poly_rel (xs2 # y1) Y2" unfolding poly_rel_def by simp
show ?case unfolding id0 id1 coeffs_uminus[symmetric] coeffs_plus_eq_plus_coeffs[symmetric]
poly_rel_def[symmetric] by simp transfer_prover
qed
qed
lemma poly_rel_smult[transfer_rule]: "(R ===> poly_rel ===> poly_rel) (smult_i ops) smult"
unfolding rel_fun_def poly_rel_def coeffs_smult' smult_i_def
proof (intro allI impI, goal_cases)
case (1 x y xs ys)
note [transfer_rule] = 1
show ?case by transfer_prover
qed
lemma poly_rel_coeffs[transfer_rule]: "(poly_rel ===> list_all2 R) (λ x. x) coeffs"
unfolding rel_fun_def poly_rel_def by auto
lemma poly_rel_poly_of_list[transfer_rule]: "(list_all2 R ===> poly_rel) (poly_of_list_i ops) poly_of_list"
unfolding rel_fun_def poly_of_list_i_def poly_rel_def poly_of_list_impl
proof (intro allI impI, goal_cases)
case (1 x y)
note [transfer_rule] = this
show ?case by transfer_prover
qed
lemma poly_rel_monom_mult[transfer_rule]:
"((=) ===> poly_rel ===> poly_rel) (monom_mult_i ops) monom_mult"
unfolding rel_fun_def monom_mult_i_def poly_rel_def monom_mult_code Let_def
proof (auto, goal_cases)
case (1 x xs y)
show ?case by (induct x, auto simp: 1(3) zero)
qed
declare karatsuba_main_i.simps[simp del]
lemma list_rel_coeffs_minus_i: assumes "list_all2 R x1 x2" "list_all2 R y1 y2"
shows "list_all2 R (coeffs_minus_i ops x1 y1) (coeffs_minus x2 y2)"
proof -
note simps = coeffs_minus_i.simps coeffs_minus.simps
show ?thesis using assms
proof (induct x1 y1 arbitrary: x2 y2 rule: coeffs_minus_i.induct)
case (1 x xs y ys)
from 1(2-) obtain Y Ys where y2: "y2 = Y # Ys" unfolding list_all2_conv_all_nth by (cases y2, auto)
with 1(2-) have y: "R y Y" "list_all2 R ys Ys" by auto
from 1(2-) obtain X Xs where x2: "x2 = X # Xs" unfolding list_all2_conv_all_nth by (cases x2, auto)
with 1(2-) have x: "R x X" "list_all2 R xs Xs" by auto
from 1(1)[OF x(2) y(2)] x(1) y(1)
show ?case unfolding x2 y2 simps using minus[unfolded rel_fun_def] by auto
next
case (3 y ys)
from 3 have x2: "x2 = []" by auto
from 3 obtain Y Ys where y2: "y2 = Y # Ys" unfolding list_all2_conv_all_nth by (cases y2, auto)
obtain y1 where y1: "y # ys = y1" by auto
show ?case unfolding y2 simps x2 unfolding y2[symmetric] list_all2_map2 list_all2_map1
using 3(2) unfolding y1 using uminus[unfolded rel_fun_def]
unfolding list_all2_conv_all_nth by auto
qed auto
qed
lemma poly_rel_karatsuba_main: "list_all2 R x1 x2 ⟹ list_all2 R y1 y2 ⟹
poly_rel (karatsuba_main_i ops x1 n y1 m) (karatsuba_main x2 n y2 m)"
proof (induct n arbitrary: x1 y1 x2 y2 m rule: less_induct)
case (less n f g F G m)
note simp[simp] = karatsuba_main.simps[of F n G m] karatsuba_main_i.simps[of ops f n g m]
note IH = less(1)
note rel[transfer_rule] = less(2-3)
show ?case (is "poly_rel ?lhs ?rhs")
proof (cases "(n ≤ karatsuba_lower_bound ∨ m ≤ karatsuba_lower_bound) = False")
case False
from False
have lhs: "?lhs = foldr (λa p. plus_poly_i ops (smult_i ops a (poly_of_list_i ops f))
(cCons_i ops zero p)) g []" by simp
from False have rhs: "?rhs = foldr (λa p. smult a (poly_of_list F) + pCons 0 p) G 0" by simp
show ?thesis unfolding lhs rhs by transfer_prover
next
case True note * = this
let ?n2 = "n div 2"
have "?n2 < n" "n - ?n2 < n" using True unfolding karatsuba_lower_bound_def by auto
note IH = IH[OF this(1)] IH[OF this(2)]
obtain f1 f0 where f: "split_at ?n2 f = (f0,f1)" by force
obtain g1 g0 where g: "split_at ?n2 g = (g0,g1)" by force
obtain F1 F0 where F: "split_at ?n2 F = (F0,F1)" by force
obtain G1 G0 where G: "split_at ?n2 G = (G0,G1)" by force
from rel f F have relf[transfer_rule]: "list_all2 R f0 F0" "list_all2 R f1 F1"
unfolding split_at_def by auto
from rel g G have relg[transfer_rule]: "list_all2 R g0 G0" "list_all2 R g1 G1"
unfolding split_at_def by auto
show ?thesis
proof (cases "?n2 < m")
case True
obtain p1 P1 where p1: "p1 = karatsuba_main_i ops f1 (n - n div 2) g1 (m - n div 2)"
"P1 = karatsuba_main F1 (n - n div 2) G1 (m - n div 2)" by auto
obtain p2 P2 where p2: "p2 = karatsuba_main_i ops (coeffs_minus_i ops f1 f0) (n div 2)
(coeffs_minus_i ops g1 g0) (n div 2)"
"P2 = karatsuba_main (coeffs_minus F1 F0) (n div 2)
(coeffs_minus G1 G0) (n div 2)" by auto
obtain p3 P3 where p3: "p3 = karatsuba_main_i ops f0 (n div 2) g0 (n div 2)"
"P3 = karatsuba_main F0 (n div 2) G0 (n div 2)" by auto
from * True have lhs: "?lhs = plus_poly_i ops (monom_mult_i ops (n div 2 + n div 2) p1)
(plus_poly_i ops
(monom_mult_i ops (n div 2)
(plus_poly_i ops (minus_poly_i ops p1 p2) p3)) p3)"
unfolding simp Let_def f g split p1 p2 p3 by auto
have [transfer_rule]: "poly_rel p1 P1" using IH(2)[OF relf(2) relg(2)] unfolding p1 .
have [transfer_rule]: "poly_rel p3 P3" using IH(1)[OF relf(1) relg(1)] unfolding p3 .
have [transfer_rule]: "poly_rel p2 P2" unfolding p2
by (rule IH(1)[OF list_rel_coeffs_minus_i list_rel_coeffs_minus_i], insert relf relg)
from True * have rhs: "?rhs = monom_mult (n div 2 + n div 2) P1 +
(monom_mult (n div 2) (P1 - P2 + P3) + P3)"
unfolding simp Let_def F G split p1 p2 p3 by auto
show ?thesis unfolding lhs rhs by transfer_prover
next
case False
obtain p1 P1 where p1: "p1 = karatsuba_main_i ops f1 (n - n div 2) g m"
"P1 = karatsuba_main F1 (n - n div 2) G m" by auto
obtain p2 P2 where p2: "p2 = karatsuba_main_i ops f0 (n div 2) g m"
"P2 = karatsuba_main F0 (n div 2) G m" by auto
from * False have lhs: "?lhs = plus_poly_i ops (monom_mult_i ops (n div 2) p1) p2"
unfolding simp Let_def f split p1 p2 by auto
from * False have rhs: "?rhs = monom_mult (n div 2) P1 + P2"
unfolding simp Let_def F split p1 p2 by auto
have [transfer_rule]: "poly_rel p1 P1" using IH(2)[OF relf(2) rel(2)] unfolding p1 .
have [transfer_rule]: "poly_rel p2 P2" using IH(1)[OF relf(1) rel(2)] unfolding p2 .
show ?thesis unfolding lhs rhs by transfer_prover
qed
qed
qed
lemma poly_rel_times[transfer_rule]: "(poly_rel ===> poly_rel ===> poly_rel) (times_poly_i ops) ((*))"
proof (intro rel_funI)
fix x1 y1 x2 y2
assume x12[transfer_rule]: "poly_rel x1 x2" and y12 [transfer_rule]: "poly_rel y1 y2"
hence X12[transfer_rule]: "list_all2 R x1 (coeffs x2)" and Y12[transfer_rule]: "list_all2 R y1 (coeffs y2)"
unfolding poly_rel_def by auto
hence len: "length (coeffs x2) = length x1" "length (coeffs y2) = length y1"
unfolding list_all2_conv_all_nth by auto
let ?cond1 = "length x1 ≤ karatsuba_lower_bound ∨ length y1 ≤ karatsuba_lower_bound"
let ?cond2 = "length x1 ≤ length y1"
note d = karatsuba_mult_poly[symmetric] karatsuba_mult_poly_def Let_def
times_poly_i_def len if_True if_False
consider (TT) "?cond1 = True" "?cond2 = True" | (TF) "?cond1 = True" "?cond2 = False"
| (FT) "?cond1 = False" "?cond2 = True" | (FF) "?cond1 = False" "?cond2 = False" by auto
thus "poly_rel (times_poly_i ops x1 y1) (x2 * y2)"
proof (cases)
case TT
show ?thesis unfolding d TT
unfolding poly_rel_def coeffs_eq_iff times_poly_def times_poly_i_def fold_coeffs_def
by transfer_prover
next
case TF
show ?thesis unfolding d TF
unfolding poly_rel_def coeffs_eq_iff times_poly_def times_poly_i_def fold_coeffs_def
by transfer_prover
next
case FT
show ?thesis unfolding d FT
by (rule poly_rel_karatsuba_main[OF Y12 X12])
next
case FF
show ?thesis unfolding d FF
by (rule poly_rel_karatsuba_main[OF X12 Y12])
qed
qed
lemma poly_rel_coeff[transfer_rule]: "(poly_rel ===> (=) ===> R) (coeff_i ops) coeff"
unfolding poly_rel_def rel_fun_def coeff_i_def nth_default_coeffs_eq[symmetric]
proof (intro allI impI, clarify)
fix x y n
assume [transfer_rule]: "list_all2 R x (coeffs y)"
show "R (nth_default zero x n) (nth_default 0 (coeffs y) n)" by transfer_prover
qed
lemma poly_rel_degree[transfer_rule]: "(poly_rel ===> (=)) degree_i degree"
unfolding poly_rel_def rel_fun_def degree_i_def degree_eq_length_coeffs
by (simp add: list_all2_lengthD)
lemma lead_coeff_i_def': "lead_coeff_i ops x = (coeff_i ops) x (degree_i x)"
unfolding lead_coeff_i_def degree_i_def coeff_i_def
proof (cases x, auto, goal_cases)
case (1 a xs)
hence id: "last xs = last (a # xs)" by auto
show ?case unfolding id by (subst last_conv_nth_default, auto)
qed
lemma poly_rel_lead_coeff[transfer_rule]: "(poly_rel ===> R) (lead_coeff_i ops) lead_coeff"
unfolding lead_coeff_i_def' [abs_def] by transfer_prover
lemma poly_rel_minus_poly_rev_list[transfer_rule]:
"(list_all2 R ===> list_all2 R ===> list_all2 R) (minus_poly_rev_list_i ops) minus_poly_rev_list"
proof (intro rel_funI, goal_cases)
case (1 x1 x2 y1 y2)
thus ?case
proof (induct x1 y1 arbitrary: x2 y2 rule: minus_poly_rev_list_i.induct)
case (1 x1 xs1 y1 ys1 X2 Y2)
from 1(2) obtain x2 xs2 where X2: "X2 = x2 # xs2" by (cases X2, auto)
from 1(3) obtain y2 ys2 where Y2: "Y2 = y2 # ys2" by (cases Y2, auto)
from 1(2) 1(3) have [transfer_rule]: "R x1 x2" "R y1 y2"
and *: "list_all2 R xs1 xs2" "list_all2 R ys1 ys2" unfolding X2 Y2 by auto
note [transfer_rule] = 1(1)[OF *]
show ?case unfolding X2 Y2 by (simp, intro conjI, transfer_prover+)
next
case (2 xs1 xs2 ys2)
thus ?case by (cases xs2, auto)
next
case (3 xs2 y1 ys1 Y2)
thus ?case by (cases Y2, auto)
qed
qed
lemma divmod_poly_one_main_i: assumes len: "n ≤ length Y" and rel: "list_all2 R x X" "list_all2 R y Y"
"list_all2 R z Z" and n: "n = N"
shows "rel_prod (list_all2 R) (list_all2 R) (divmod_poly_one_main_i ops x y z n)
(divmod_poly_one_main_list X Y Z N)"
using len rel unfolding n
proof (induct N arbitrary: x X y Y z Z)
case (Suc n x X y Y z Z)
from Suc(2,4) have [transfer_rule]: "R (hd y) (hd Y)" by (cases y; cases Y, auto)
note [transfer_rule] = Suc(3-5)
have id: "?case = (rel_prod (list_all2 R) (list_all2 R)
(divmod_poly_one_main_i ops (cCons_i ops (hd y) x)
(tl (if hd y = zero then y else minus_poly_rev_list_i ops y (map (times (hd y)) z))) z n)
(divmod_poly_one_main_list (cCons (hd Y) X)
(tl (if hd Y = 0 then Y else minus_poly_rev_list Y (map ((*) (hd Y)) Z))) Z n))"
by (simp add: Let_def)
show ?case unfolding id
proof (rule Suc(1), goal_cases)
case 1
show ?case using Suc(2) by simp
qed (transfer_prover+)
qed simp
lemma mod_poly_one_main_i: assumes len: "n ≤ length X" and rel: "list_all2 R x X" "list_all2 R y Y"
and n: "n = N"
shows "list_all2 R (mod_poly_one_main_i ops x y n)
(mod_poly_one_main_list X Y N)"
using len rel unfolding n
proof (induct N arbitrary: x X y Y)
case (Suc n y Y z Z)
from Suc(2,3) have [transfer_rule]: "R (hd y) (hd Y)" by (cases y; cases Y, auto)
note [transfer_rule] = Suc(3-4)
have id: "?case = (list_all2 R
(mod_poly_one_main_i ops
(tl (if hd y = zero then y else minus_poly_rev_list_i ops y (map (times (hd y)) z))) z n)
(mod_poly_one_main_list
(tl (if hd Y = 0 then Y else minus_poly_rev_list Y (map ((*) (hd Y)) Z))) Z n))"
by (simp add: Let_def)
show ?case unfolding id
proof (rule Suc(1), goal_cases)
case 1
show ?case using Suc(2) by simp
qed (transfer_prover+)
qed simp
lemma poly_rel_dvd[transfer_rule]: "(poly_rel ===> poly_rel ===> (=)) (dvd_poly_i ops) (dvd)"
unfolding dvd_poly_i_def[abs_def] dvd_def[abs_def]
by (transfer_prover_start, transfer_step+, auto)
lemma poly_rel_monic[transfer_rule]: "(poly_rel ===> (=)) (monic_i ops) monic"
unfolding monic_i_def lead_coeff_i_def' by transfer_prover
lemma poly_rel_pdivmod_monic: assumes mon: "monic Y"
and x: "poly_rel x X" and y: "poly_rel y Y"
shows "rel_prod poly_rel poly_rel (pdivmod_monic_i ops x y) (pdivmod_monic X Y)"
proof -
note [transfer_rule] = x y
note listall = this[unfolded poly_rel_def]
note defs = pdivmod_monic_def pdivmod_monic_i_def Let_def
from mon obtain k where len: "length (coeffs Y) = Suc k" unfolding poly_rel_def list_all2_iff
by (cases "coeffs Y", auto)
have [transfer_rule]:
"rel_prod (list_all2 R) (list_all2 R)
(divmod_poly_one_main_i ops [] (rev x) (rev y) (1 + length x - length y))
(divmod_poly_one_main_list [] (rev (coeffs X)) (rev (coeffs Y)) (1 + length (coeffs X) - length (coeffs Y)))"
by (rule divmod_poly_one_main_i, insert x y listall, auto, auto simp: poly_rel_def list_all2_iff len)
show ?thesis unfolding defs by transfer_prover
qed
lemma ring_ops_poly: "ring_ops (poly_ops ops) poly_rel"
by (unfold_locales, auto simp: poly_ops_def
bi_unique_poly_rel
right_total_poly_rel
poly_rel_times
poly_rel_zero
poly_rel_one
poly_rel_minus
poly_rel_uminus
poly_rel_plus
poly_rel_eq
Domainp_is_poly)
end
context idom_ops
begin
lemma poly_rel_pderiv [transfer_rule]: "(poly_rel ===> poly_rel) (pderiv_i ops) pderiv"
proof (intro rel_funI, unfold poly_rel_def coeffs_pderiv_code pderiv_i_def pderiv_coeffs_def)
fix xs xs'
assume "list_all2 R xs (coeffs xs')"
then obtain ys ys' y y' where id: "tl xs = ys" "tl (coeffs xs') = ys'" "one = y" "1 = y'" and
R: "list_all2 R ys ys'" "R y y'"
by (cases xs; cases "coeffs xs'"; auto simp: one)
show "list_all2 R (pderiv_main_i ops one (tl xs))
(pderiv_coeffs_code 1 (tl (coeffs xs')))"
unfolding id using R
proof (induct ys ys' arbitrary: y y' rule: list_all2_induct)
case (Cons x xs x' xs' y y')
note [transfer_rule] = Cons(1,2,4)
have "R (plus y one) (y' + 1)" by transfer_prover
note [transfer_rule] = Cons(3)[OF this]
show ?case by (simp, transfer_prover)
qed simp
qed
lemma poly_rel_irreducible[transfer_rule]: "(poly_rel ===> (=)) (irreducible_i ops) irreducible⇩d"
unfolding irreducible_i_def[abs_def] irreducible⇩d_def[abs_def]
by (transfer_prover_start, transfer_step+, auto)
lemma idom_ops_poly: "idom_ops (poly_ops ops) poly_rel"
using ring_ops_poly unfolding ring_ops_def idom_ops_def by auto
end
context idom_divide_ops
begin
lemma poly_rel_sdiv[transfer_rule]: "(poly_rel ===> R ===> poly_rel) (sdiv_i ops) sdiv_poly"
unfolding rel_fun_def poly_rel_def coeffs_sdiv sdiv_i_def
proof (intro allI impI, goal_cases)
case (1 x y xs ys)
note [transfer_rule] = 1
show ?case by transfer_prover
qed
end
context field_ops
begin
lemma poly_rel_div[transfer_rule]: "(poly_rel ===> poly_rel ===> poly_rel)
(div_field_poly_i ops) (div)"
proof (intro rel_funI, goal_cases)
case (1 x X y Y)
note [transfer_rule] = this
note listall = this[unfolded poly_rel_def]
note defs = div_field_poly_impl div_field_poly_impl_def div_field_poly_i_def Let_def
show ?case
proof (cases "y = []")
case True
with 1(2) have nil: "coeffs Y = []" unfolding poly_rel_def by auto
show ?thesis unfolding defs True nil poly_rel_def by auto
next
case False
from append_butlast_last_id[OF False] obtain ys yl where y: "y = ys @ [yl]" by metis
from False listall have "coeffs Y ≠ []" by auto
from append_butlast_last_id[OF this] obtain Ys Yl where Y: "coeffs Y = Ys @ [Yl]" by metis
from listall have [transfer_rule]: "R yl Yl" by (simp add: y Y)
have id: "last (coeffs Y) = Yl" "last (y) = yl"
"⋀ t e. (if y = [] then t else e) = e"
"⋀ t e. (if coeffs Y = [] then t else e) = e" unfolding y Y by auto
have [transfer_rule]: "(rel_prod (list_all2 R) (list_all2 R))
(divmod_poly_one_main_i ops [] (rev x) (rev (map (times (inverse yl)) y))
(1 + length x - length y))
(divmod_poly_one_main_list [] (rev (coeffs X))
(rev (map ((*) (Fields.inverse Yl)) (coeffs Y)))
(1 + length (coeffs X) - length (coeffs Y)))"
proof (rule divmod_poly_one_main_i, goal_cases)
case 5
from listall show ?case by (simp add: list_all2_lengthD)
next
case 1
from listall show ?case by (simp add: list_all2_lengthD Y)
qed transfer_prover+
show ?thesis unfolding defs id by transfer_prover
qed
qed
lemma poly_rel_mod[transfer_rule]: "(poly_rel ===> poly_rel ===> poly_rel)
(mod_field_poly_i ops) (mod)"
proof (intro rel_funI, goal_cases)
case (1 x X y Y)
note [transfer_rule] = this
note listall = this[unfolded poly_rel_def]
note defs = mod_poly_code mod_field_poly_i_def Let_def
show ?case
proof (cases "y = []")
case True
with 1(2) have nil: "coeffs Y = []" unfolding poly_rel_def by auto
show ?thesis unfolding defs True nil poly_rel_def by (simp add: listall)
next
case False
from append_butlast_last_id[OF False] obtain ys yl where y: "y = ys @ [yl]" by metis
from False listall have "coeffs Y ≠ []" by auto
from append_butlast_last_id[OF this] obtain Ys Yl where Y: "coeffs Y = Ys @ [Yl]" by metis
from listall have [transfer_rule]: "R yl Yl" by (simp add: y Y)
have id: "last (coeffs Y) = Yl" "last (y) = yl"
"⋀ t e. (if y = [] then t else e) = e"
"⋀ t e. (if coeffs Y = [] then t else e) = e" unfolding y Y by auto
have [transfer_rule]: "list_all2 R
(mod_poly_one_main_i ops (rev x) (rev (map (times (inverse yl)) y))
(1 + length x - length y))
(mod_poly_one_main_list (rev (coeffs X))
(rev (map ((*) (Fields.inverse Yl)) (coeffs Y)))
(1 + length (coeffs X) - length (coeffs Y)))"
proof (rule mod_poly_one_main_i, goal_cases)
case 4
from listall show ?case by (simp add: list_all2_lengthD)
next
case 1
from listall show ?case by (simp add: list_all2_lengthD Y)
qed transfer_prover+
show ?thesis unfolding defs id by transfer_prover
qed
qed
lemma poly_rel_normalize [transfer_rule]: "(poly_rel ===> poly_rel)
(normalize_poly_i ops) Rings.normalize"
unfolding normalize_poly_old_def normalize_poly_i_def lead_coeff_i_def'
by transfer_prover
lemma poly_rel_unit_factor [transfer_rule]: "(poly_rel ===> poly_rel)
(unit_factor_poly_i ops) Rings.unit_factor"
unfolding unit_factor_poly_def unit_factor_poly_i_def lead_coeff_i_def'
unfolding monom_0 by transfer_prover
lemma idom_divide_ops_poly: "idom_divide_ops (poly_ops ops) poly_rel"
proof -
interpret poly: idom_ops "poly_ops ops" poly_rel by (rule idom_ops_poly)
show ?thesis
by (unfold_locales, simp add: poly_rel_div poly_ops_def)
qed
lemma euclidean_ring_ops_poly: "euclidean_ring_ops (poly_ops ops) poly_rel"
proof -
interpret poly: idom_ops "poly_ops ops" poly_rel by (rule idom_ops_poly)
have id: "arith_ops_record.normalize (poly_ops ops) = normalize_poly_i ops"
"arith_ops_record.unit_factor (poly_ops ops) = unit_factor_poly_i ops"
unfolding poly_ops_def by simp_all
show ?thesis
by (unfold_locales, simp add: poly_rel_mod poly_ops_def, unfold id,
simp add: poly_rel_normalize, insert poly_rel_div poly_rel_unit_factor,
auto simp: poly_ops_def)
qed
lemma poly_rel_gcd [transfer_rule]: "(poly_rel ===> poly_rel ===> poly_rel) (gcd_poly_i ops) gcd"
proof -
interpret poly: euclidean_ring_ops "poly_ops ops" poly_rel by (rule euclidean_ring_ops_poly)
show ?thesis using poly.gcd_eucl_i unfolding gcd_poly_i_def gcd_eucl .
qed
lemma poly_rel_euclid_ext [transfer_rule]: "(poly_rel ===> poly_rel ===>
rel_prod (rel_prod poly_rel poly_rel) poly_rel) (euclid_ext_poly_i ops) euclid_ext"
proof -
interpret poly: euclidean_ring_ops "poly_ops ops" poly_rel by (rule euclidean_ring_ops_poly)
show ?thesis using poly.euclid_ext_i unfolding euclid_ext_poly_i_def .
qed
end
context ring_ops
begin
notepad
begin
fix xs x ys y
assume [transfer_rule]: "poly_rel xs x" "poly_rel ys y"
have "x * y = y * x" by simp
from this[untransferred]
have "times_poly_i ops xs ys = times_poly_i ops ys xs" .
end
end
end