Theory AutoCorres2.AutoCorres_Utils
theory AutoCorres_Utils
imports
Print_Annotated
ML_Fun_Cache
keywords "lazy_named_theorems"::thy_decl
begin
definition CONV_ID:: "'a::{} ⇒ 'a" where
"CONV_ID x ≡ x"
lemma CONV_ID_intro: "(x::'a::{}) ≡ CONV_ID x"
by (simp add: CONV_ID_def)
ML_file "utils.ML"
definition "FALSE ≡ (⋀P. PROP P)"
lemma ex_falso_quodlibet: "PROP FALSE ⟹ PROP P"
by (simp add: FALSE_def)
ML_file ‹context_tactical.ML›
ML_file "lazy_named_theorems.ML"
ML_file "interpretation_data.ML"
definition sim_set :: "('a ⇒ 'b ⇒ bool) ⇒ 'a set ⇒ 'b set ⇒ bool" where
"sim_set R A B ⟷ (∀a∈A. ∃b∈B. R a b)"
lemma sim_set_empty: "sim_set R {} B"
by (auto simp: sim_set_def)
lemma sim_set_insert: "R a b ⟹ sim_set R A B ⟹ sim_set R (insert a A) (insert b B)"
by (auto simp: sim_set_def)
lemma sim_set_Collect_Ex:
"(⋀a. sim_set R {x. P a x} {x. Q a x}) ⟹ sim_set R {x. ∃a. P a x} {x. ∃a. Q a x}"
by (fastforce simp: sim_set_def)
lemma sim_set_Collect_conj:
"(A ⟹ sim_set R {x. P x} {x. Q x}) ⟹ sim_set R {x. A ∧ P x} {x. A ∧ Q x}"
by (fastforce simp: sim_set_def)
lemma sim_set_Collect_eq:
"R a b ⟹ sim_set R {x. x = a} {x. x = b}"
by (fastforce simp: sim_set_def)
lemma sim_set_eq_rel_set: "sim_set R = rel_set R OO (⊆)"
apply (auto simp: sim_set_def rel_set_def relcomp.simps fun_eq_iff OO_def)[1]
subgoal for A B
by (intro exI[of _ "{b∈B. ∃a∈A. R a b}"]) blast
apply blast
done
end