Theory AutoCorres2.Arrays
theory Arrays
imports
"HOL-Library.Numeral_Type"
begin
definition has_size :: "'a set ⇒ nat ⇒ bool" where
"has_size s n = (finite s ∧ card s = n)"
definition finite_index :: "nat ⇒ 'a::finite" where
"finite_index = (SOME f. ∀x. ∃!n. n < CARD('a) ∧ f n = x)"
lemma card_image_inj:
"⟦ finite S; ⋀x y. ⟦ x ∈ S; y ∈ S; f x = f y ⟧ ⟹ x = y ⟧ ⟹ card (f ` S) = card S"
by (induct rule: finite_induct) (auto simp: card_insert_if)
lemma has_size_image_inj:
"⟦ has_size S n; ⋀x y. x ∈ S ∧ y ∈ S ∧ f x = f y ⟹ x = y ⟧ ⟹ has_size (f ` S) n"
by (simp add: has_size_def card_image_inj)
lemma has_size_0[simp]:
"has_size S 0 = (S = {})"
by (auto simp: has_size_def)
lemma has_size_suc:
"has_size S (Suc n) = (S ≠ {} ∧ (∀a. a ∈ S ⟶ has_size (S - {a}) n))"
unfolding has_size_def
by (metis Diff_empty Suc_not_Zero bot_least card_Suc_Diff1 card_gt_0_iff finite_Diff_insert
nat.inject neq0_conv subsetI subset_antisym)
lemma has_index:
"⟦ finite S; card S = n ⟧ ⟹
(∃f. (∀m. m < n ⟶ f m ∈ S) ∧ (∀x. x∈S ⟶ (∃!m. m < n ∧ f m = x)))"
proof (induct n arbitrary: S)
case 0 thus ?case by (auto simp: card_eq_0_iff)
next
case (Suc n)
then obtain b B where
S: "S = insert b B ∧ b ∉ B ∧ card B = n ∧ (n = 0 ⟶ B = {})"
by (auto simp: card_Suc_eq)
with ‹finite S› Suc.hyps [of B]
obtain f where IH: "(∀m<n. f m ∈ B) ∧ (∀x. x ∈ B ⟶ (∃!m. m < n ∧ f m = x))" by auto
define f' where "f' ≡ λm. if m = card B then b else f m"
from Suc.prems S IH
have "(∀m<Suc n. f' m ∈ S) ∧ (∀x. x ∈ S ⟶ (∃!m. m < Suc n ∧ f' m = x))"
unfolding f'_def
apply (clarsimp)
apply (rule conjI, metis less_SucE)
apply (metis less_SucE less_SucI nat_neq_iff)
done
thus ?case by blast
qed
lemma finite_index_works:
"∃!n. n < CARD('n::finite) ∧ finite_index n = (i::'n)"
proof -
have "∃f::nat ⇒ 'n. ∀i. ∃!n. n < CARD('n) ∧ f n = i"
using has_index[where S = "UNIV :: 'n set"] by simp
hence "∀i. ∃!n. n < CARD('n::finite) ∧ finite_index n = (i::'n)"
unfolding finite_index_def by (rule someI_ex)
thus ?thesis ..
qed
lemma finite_index_inj:
"⟦ i < CARD('a::finite); j < CARD('a) ⟧ ⟹
((finite_index i :: 'a) = finite_index j) = (i = j)"
using finite_index_works[where i = "finite_index j"] by blast
lemma forall_finite_index:
"(∀k::'a::finite. P k) = (∀i. i < CARD('a) ⟶ P (finite_index i))"
by (metis finite_index_works)
section ‹Finite Cartesian Products›
typedef ('a,'n::finite) array ("_[_]" [30,0] 31) = "UNIV :: ('n => 'a) set"
by simp
setup_lifting type_definition_array
lift_definition index :: "('a,'n::finite) array ⇒ nat ⇒ 'a" ("_.[_]" [900,0] 901) is
"λf i. f (finite_index i)".
lemma index_legacy_def: "index x i = Rep_array x (finite_index i)"
by (transfer) simp
theorem array_index_eq:
"((x::'a['n::finite]) = y) = (∀i. i < CARD('n) ⟶ x.[i] = y.[i])"
by (auto dest!: forall_finite_index [THEN iffD2]
simp: index_def Rep_array_inject [symmetric])
lemmas cart_eq = array_index_eq
lemma array_ext:
fixes x :: "'a['n::finite]"
shows "(⋀i. i < CARD('n) ⟹ x.[i] = y.[i]) ⟹ x = y"
by (simp add: array_index_eq)
definition FCP :: "(nat ⇒ 'a) ⇒ 'a['b::finite]" (binder "ARRAY " 10) where
"FCP ≡ λg. SOME a. ∀i. i < CARD('b) ⟶ a.[i] = g i"
definition update :: "'a['n::finite] ⇒ nat ⇒ 'a ⇒ 'a['n]" where
"update f i x ≡ FCP ((index f)(i := x))"
definition fupdate :: "nat ⇒ ('a ⇒ 'a) ⇒ 'a['b::finite] ⇒ 'a['b]" where
"fupdate i f x ≡ update x i (f (index x i))"
lemma fcp_beta[simp]: "i < CARD('n :: finite) ⟹ (FCP g :: 'a['n]).[i] = g i"
proof -
have "∀i < CARD('n). (FCP g :: 'a['n]).[i] = g i"
unfolding FCP_def
proof (rule someI_ex)
let ?g' = "λk::'n. g (SOME i. i < CARD('n) ∧ finite_index i = k)"
have "∀i<CARD('n). (Abs_array ?g').[i] = g i"
by (clarsimp simp: index_def Abs_array_inverse)
(metis (mono_tags, lifting) finite_index_inj someI_ex)
thus "∃x::'a['n]. ∀i<CARD('n). x.[i] = g i" ..
qed
thus "i < CARD('n :: finite) ⟹ (FCP g :: 'a['n]).[i] = g i" by auto
qed
lemma fcp_unique:
"(∀i. i < CARD('b::finite) ⟶ index f i = g i) =
(FCP g = (f :: ('a,'b) array))"
by (fastforce simp: cart_eq)
lemma fcp_eta[simp]:
"(ARRAY i. g.[i]) = g"
by (simp add: cart_eq)
lemma index_update[simp]:
"n < CARD('b::finite) ⟹ index (update (f::'a['b]) n x) n = x"
by (simp add: update_def)
lemma index_update2[simp]:
"⟦ k < CARD('b::finite); n ≠ k ⟧ ⟹ index (update (f::'a['b]) n x) k = index f k"
by (simp add: update_def)
lemma update_update[simp]:
"update (update f n x) n y = update f n y"
by (simp add: cart_eq update_def)
lemma update_comm[simp]:
"n ≠ m ⟹ update (update f m v) n v' = update (update f n v') m v"
by (simp add: cart_eq update_def)
lemma update_index_same [simp]:
"update v n (index v n) = v"
by (simp add: cart_eq update_def)
function foldli0 :: "(nat ⇒ 'acc ⇒ 'a ⇒ 'acc) ⇒ 'acc ⇒ nat ⇒ 'a['index::finite] ⇒ 'acc" where
"foldli0 f a i arr = (if CARD('index) ≤ i then a else foldli0 f (f i a (index arr i)) (i+1) arr)"
by pat_completeness auto
termination
by (relation "measure (λ(f,a,i,(arr::'b['c::finite])). CARD('c) - i)") auto
definition foldli :: "(nat ⇒ 'acc ⇒ 'a ⇒ 'acc) ⇒ 'acc ⇒ ('a,'i::finite) array ⇒ 'acc" where
"foldli f a arr = foldli0 f a 0 arr"
definition map_array :: "('a ⇒ 'b) ⇒ 'a['n::finite] ⇒ 'b['n]" where
"map_array f a ≡ ARRAY i. f (a.[i])"
definition map_array2 :: "('a ⇒ 'b ⇒ 'c) ⇒ 'a['n::finite] ⇒ 'b['n] ⇒ 'c['n]" where
"map_array2 f a b ≡ ARRAY i. f (a.[i]) (b.[i])"
definition zip_array :: "'a['b::finite] ⇒ 'c['b] ⇒ ('a × 'c)['b]" where
"zip_array ≡ map_array2 Pair"
definition list_array :: "('a,'n::finite) array ⇒ 'a list" where
"list_array a = map (index a) [0..<CARD('n)]"
lift_definition set_array :: "'a['n::finite] ⇒ 'a set" is range .
lemma set_array_list:
"set_array a = set (list_array a)"
by (simp add: list_array_def index_def set_array.rep_eq image_def)
(metis atLeast0LessThan finite_index_works lessThan_iff)
definition rel_array :: "('a ⇒ 'b ⇒ bool) ⇒ 'a['n::finite] ⇒ 'b['n] ⇒ bool" where
"rel_array f a b ≡ ∀i < CARD('n). f (a.[i]) (b.[i])"
lemma map_array_index:
fixes a :: "'a['n::finite]"
shows "n < CARD('n) ⟹ (map_array f a).[n] = f (a.[n])"
by (metis fcp_beta map_array_def)
lemma map_array2_index:
fixes a :: "'a['n::finite]"
shows "n < CARD('n) ⟹ (map_array2 f a b).[n] = f (a.[n]) (b.[n])"
by (metis fcp_beta map_array2_def)
lemma zip_array_index:
fixes a :: "'a['n::finite]"
shows "n < CARD('n) ⟹ (zip_array a b).[n] = (a.[n],b.[n])"
by (simp add: zip_array_def map_array2_index)
lemma map_array_id[simp]:
"map_array id = id"
by (auto simp: map_array_index array_ext)
lemma map_array_comp:
"map_array (g ∘ f) = map_array g ∘ map_array f"
by (auto simp: map_array_def intro!: array_ext)
lemma list_array_nth:
fixes a :: "'a['n::finite]"
shows "n < CARD('n) ⟹ list_array a ! n = index a n"
by (simp add: list_array_def)
lemma list_array_length [simp]:
"length (list_array (a :: 'a['n::finite])) = CARD('n)"
by (simp add: list_array_def)
lemma in_set_array_index_conv:
"(z ∈ set_array (a :: 'a['n::finite])) = (∃n < CARD('n). z = a.[n])"
by (metis in_set_conv_nth list_array_length list_array_nth nth_mem set_array_list)
lemma in_set_arrayE [elim!]:
"⟦ z ∈ set_array (a :: 'a['n::finite]); ⋀n . ⟦n < CARD('n); z = a.[n]⟧ ⟹ P ⟧ ⟹ P"
by (metis in_set_array_index_conv)
lemma map_array_setI:
"(⋀z. z ∈ set_array x ⟹ f z = g z) ⟹ map_array f x = map_array g x"
by (rule array_ext) (auto simp: map_array_index in_set_array_index_conv)
lemma list_array_map_array:
"list_array (map_array f a) = map f (list_array a)"
by (simp add: list_array_def map_array_index)
lemma list_array_FCP [simp]:
"list_array (FCP f :: 'a['n]) = map f [0..<CARD('n::finite)]"
by (simp add: list_array_def)
lemma set_array_FCP [simp]:
"set_array (FCP f :: 'a['n]) = f ` {0..< CARD('n::finite)}"
by (auto simp: set_array_list)
lemma map_array_set_img:
"set_array ∘ map_array f = (`) f ∘ set_array"
by (rule ext) (auto simp: map_array_def in_set_array_index_conv intro!: imageI)
lemma fcp_cong [cong]:
"(⋀i. i < CARD('n::finite) ⟹ f i = g i) ⟹ FCP f = (FCP g :: 'a['n])"
by (rule array_ext) simp
bnf "('a,'n::finite) array"
map: map_array
sets: set_array
bd: "card_suc (BNF_Cardinal_Arithmetic.csum natLeq (card_of (UNIV :: 'n set)))"
rel: rel_array
proof -
show "map_array id = id" by simp
next
fix f :: "'a ⇒ 'b" and g :: "'b ⇒ 'c"
show "map_array (g ∘ f) = map_array g ∘ map_array f"
by (rule map_array_comp)
next
fix x :: "'a['n::finite]" and f :: "'a ⇒ 'b" and g
assume "⋀z. z ∈ set_array x ⟹ f z = g z"
thus "map_array f x = map_array g x"
by (rule map_array_setI)
next
fix f :: "'a ⇒ 'b"
show "set_array ∘ map_array f = (`) f ∘ set_array"
by (rule map_array_set_img)
next
show "card_order (card_suc (BNF_Cardinal_Arithmetic.csum natLeq (card_of UNIV)))"
by (simp add: card_of_card_order_on card_order_card_suc card_order_csum natLeq_card_order)
next
show " BNF_Cardinal_Arithmetic.cinfinite (card_suc (BNF_Cardinal_Arithmetic.csum natLeq (card_of UNIV)))"
by (simp add: Card_order_csum Cinfinite_card_suc card_of_card_order_on card_order_csum
cinfinite_csum natLeq_Cinfinite natLeq_card_order)
next
fix R :: "'a ⇒ 'b ⇒ bool" and S :: "'b ⇒ 'c ⇒ bool"
show "rel_array R OO rel_array S ≤ rel_array (R OO S)"
by (force simp: rel_array_def)
next
fix R :: "'a ⇒ 'b ⇒ bool"
{ fix a :: "('a × 'b)['n::finite]" and i
have "⟦set_array a ⊆ {(x, y). R x y}; i < CARD('n)⟧ ⟹ R (fst (a.[i])) (snd (a.[i]))"
by (meson Collect_case_prodD in_set_array_index_conv subset_iff)
} note conv = this
show "rel_array R =
(λx y. ∃z. set_array z ⊆ {(x, y). R x y} ∧ map_array fst z = x ∧ map_array snd z = y)"
unfolding rel_array_def
apply (intro ext iffI)
subgoal for a b
apply (rule exI [where x="zip_array a b"])
by (auto intro!: array_ext simp: conv map_array_index zip_array_index)
subgoal
by (auto intro!: array_ext simp: conv map_array_index zip_array_index)
done
next
show "regularCard (card_suc (BNF_Cardinal_Arithmetic.csum natLeq (card_of UNIV)))"
by (simp add: Card_order_csum card_of_card_order_on card_order_csum cinfinite_csum
natLeq_Cinfinite natLeq_card_order regularCard_card_suc)
next
fix x :: "'a['n::finite]"
let ?U = "UNIV :: 'n set"
have "ordLeq3 (card_of (set_array x)) (card_of ?U)" by transfer (rule card_of_image)
also
have "ordLeq3 (card_of ?U) (BNF_Cardinal_Arithmetic.csum natLeq (card_of ?U))"
by (rule ordLeq_csum2) (rule card_of_Card_order)
finally
have "ordLeq3 (card_of (set_array x)) (BNF_Cardinal_Arithmetic.csum natLeq (card_of ?U))" .
then show "ordLess2 (card_of (set_array x))
(card_suc (BNF_Cardinal_Arithmetic.csum natLeq (card_of ?U)))"
using ordLeq_ordLess_trans card_suc_greater card_order_csum natLeq_card_order
card_of_card_order_on
by blast
qed
lemma arr_fupdate_same: "i < CARD('n) ⟹
index (fupdate i f (x::'a['n::finite])) i = f (index x i)"
by (simp add: fupdate_def)
lemma arr_fupdate_other: "j < CARD('n) ⟹ i ≠ j ⟹
index (fupdate i f (x::'a['n::finite])) j = (index x j)"
by (simp add: fupdate_def)
lemmas arr_fupdate_simps = arr_fupdate_same arr_fupdate_other
lemma surj_finite_index: "surj finite_index"
by (metis finite_index_works surj_def)
lemma finite_index_inj_on: "inj_on (finite_index::nat⇒'a::finite) {i. i < CARD('a)}"
by (simp add: finite_index_inj inj_on_def)
lemma finite_index_bij_betw: "bij_betw (finite_index::nat⇒'a::finite) {i. i < CARD('a)} UNIV"
using finite_index_inj_on
by (metis (mono_tags, lifting) UNIV_I bij_betw_def finite_index_works imageI mem_Collect_eq subsetI subset_antisym)
end