Theory Match_Cterm
section ‹ML Antiquotation to Match and Instantiate (recombine) cterms and terms›
theory Match_Cterm
imports
AutoCorres_Utils
TermPatternAntiquote
begin
ML ‹
signature MATCH_CTERM =
sig
val try_match: ('a -> 'b) -> 'a -> 'b option
val switch: ('a -> 'b) list -> 'a -> 'b
val cterm_match: cterm * cterm -> ctyp TVars.table * cterm Vars.table
val cterm_first_order_match: cterm * cterm -> ctyp TVars.table * cterm Vars.table
val match: theory -> term * term -> typ TVars.table * term Vars.table
val first_order_match: theory -> term * term -> typ TVars.table * term Vars.table
val pattern_vars: term -> term list
val cterm_pattern_vars: cterm -> cterm list
val cterm_instantiate: Position.T ->
ctyp TVars.table * cterm Vars.table ->
cterm list -> cterm list -> cterm -> cterm
val instantiate: Position.T ->
typ TVars.table * term Vars.table ->
term list -> term list -> term -> term
datatype mode = Higher_Order | First_Order | ML_Pattern
val parse_mode: Token.T list -> mode * Token.T list
val parse_morph_mode: Token.T list -> mode * Token.T list
val ml_match_term: {morph: bool, cert: bool} -> mode -> Proof.context -> Position.T -> string -> string
end
structure Match_Cterm: MATCH_CTERM =
struct
fun try_match f x = SOME (f x) handle Match => NONE | Pattern.MATCH => NONE
fun switch (c::cs) = (fn x =>
(case try_match c x of
SOME v => v
| NONE => switch cs x))
| switch [] = raise Match
fun ml_val_binding (name, value) = space_implode " " ["val", name, "=", value];
fun ml_indent n str = String.concat (replicate n " ") ^ str
fun ml_let_binding vals body =
["let"] @
(map (ml_indent 2) vals) @ [
"in",
ml_indent 2 body,
"end"]
fun ml_list elems = enclose "[" "]" (space_implode ", " elems)
fun ml_tuple elems = enclose "(" ")" (space_implode ", " elems)
fun ml_record elems = enclose "{" "}" (space_implode ", " elems)
val ml_atomic = enclose "(" ")"
fun triv_record_field name = space_implode " " [name, "=", name]
val triv_record_inst = map triv_record_field #> ml_record
fun ml_fun name args body =
space_implode " " (["fun", name] @ args @ ["="]) ::
(map (ml_indent 2) body)
fun ml_fn args body =
space_implode " " (map (fn arg => space_implode " " ["fn", arg, "=>"]) args)::
(map (ml_indent 2) body)
fun ml_apply f args = space_implode " " (f :: args)
fun ml_check_match term_pat args ct =
ml_apply
(ml_atomic (space_implode " " ["fn", term_pat, "=>", ml_tuple args, "| _ => raise Match" ]))
[ml_atomic (ml_apply "Thm.term_of" [ct])]
fun cterm_match (pat, obj) = Thm.match (pat, obj)
handle Pattern.MATCH => Exn.reraise Pattern.MATCH
fun cterm_first_order_match (pat, obj) = Thm.first_order_match (pat, obj)
handle Pattern.MATCH => Exn.reraise Pattern.MATCH
fun gen_match match thy (pat, obj) =
let
val (Tinsts, tinsts) = match thy (pat, obj) (Vartab.empty, Vartab.empty)
fun mk_Tinst ((a, i), (S, T)) =
(((a, i), S), T);
fun mk_tinst ((x, i), (U, t)) =
let val T = Envir.subst_type Tinsts U in
(((x, i), T), t)
end
in
(TVars.build (Vartab.fold (TVars.add o mk_Tinst) Tinsts),
Vars.build (Vartab.fold (Vars.add o mk_tinst) tinsts))
end
fun match thy (pat, obj) = gen_match Pattern.match thy (pat, obj)
handle Pattern.MATCH => Exn.reraise Pattern.MATCH
fun first_order_match thy (pat, obj) = gen_match Pattern.first_order_match thy (pat, obj)
handle Pattern.MATCH => Exn.reraise Pattern.MATCH
fun cterm_instantiate pos (tenv, env) vars vals pattern =
let
val insts = map (Term.dest_Var o Thm.term_of) vars ~~ vals
fun upd var value = the_default value (AList.lookup (op =) insts var)
val env' = Vars.map upd env
in
Thm.instantiate_cterm (tenv, env') pattern
end
handle
CTERM (msg, args) =>
Exn.reraise (CTERM (msg ^ "\n from antiquotation Match_Cterm.cterm_instantiate here: " ^ Position.here pos, args));
fun instantiate pos (tenv, env) vars vals pattern =
let
val insts = map Term.dest_Var vars ~~ vals
fun upd var value = the_default value (AList.lookup (op =) insts var)
val env' = Vars.map upd env
in
Term_Subst.instantiate (tenv, env') pattern
end
handle
TERM (msg, args) =>
Exn.reraise (TERM (msg ^ "\n from antiquotation Match_Cterm.instantiate here: " ^ Position.here pos, args));
fun collect_vars t = fold_aterms (fn Var v => cons v | _ => I) t [] |> rev
fun pattern_vars pat = pat
|> collect_vars
|> filter_out (fn (("_dummy_", _), _) => true | _ => false)
|> (distinct (op =)) |> map Var
fun cterm_pattern_vars cpat =
let
val ctxt = cpat |> Thm.theory_of_cterm |> Proof_Context.init_global
in
cpat |> Thm.term_of |> pattern_vars |> map (Thm.cterm_of ctxt)
end
datatype mode = Higher_Order | First_Order | ML_Pattern
fun ml_match_term (kind as {morph:bool, cert:bool}) (mode:mode) ctxt pos pattern_str =
let
val phiN = "phi_"
val thyN = "thy_"
val match = case (mode, kind) of
(Higher_Order, {cert = true ,...}) => "Match_Cterm.cterm_match"
| (Higher_Order, {cert = false,...}) => ml_apply "Match_Cterm.match" [thyN]
| (_ , {cert = true ,...}) => "Match_Cterm.cterm_first_order_match"
| (_ , {cert = false,...}) => ml_apply "Match_Cterm.first_order_match" [thyN]
val cterm_of = case kind of
{morph = false, cert = true } => "Thm.cterm_of ML_context"
| {morph = false, cert = false} => ""
| {morph = true , cert = true } => "(Morphism.cterm " ^ phiN ^ " o Thm.cterm_of ML_context)"
| {morph = true , cert = false} => "Morphism.term " ^ phiN
val ctN = "ct_" val envN = "env_" val instN = "inst_" val patN = "pat_" val posN = "pos_"
val instantiateN = "instantiate"
val reserved = [ctN, envN, instN, instantiateN, patN, posN, instantiateN]
val pat = Proof_Context.read_term_pattern ctxt pattern_str
val vars = collect_vars pat |> filter_out (fn (("_dummy_", _), _) => true | _ => false)
|> (mode <> ML_Pattern) ? (distinct (op =))
val names = map (#1 o #1) vars
val dups = duplicates (op =) names
val _ = if null dups then ()
else error ("ml_match_cterm: duplicate variables in pattern: " ^ Position.here pos ^ (commas (map quote dups)))
val clashes = inter (op =) names reserved
val _ = if null clashes then ()
else error ("ml_match_cterm: avoid internal name(s) in pattern: " ^ (commas (map quote clashes)))
val names_var = map (suffix "_var") names
val ml_pat = ml_apply cterm_of [ml_atomic (ML_Syntax.print_term pat)]
val ml_pattern_check =
if mode = ML_Pattern then
[ml_val_binding ("_",
ml_check_match (Term_Pattern_Antiquote.term_pattern_antiquote ctxt pattern_str) names ctN)]
else []
val pat_vars = case cert of
true => "Match_Cterm.cterm_pattern_vars"
| false => "Match_Cterm.pattern_vars"
val inst = case cert of
true => "Thm.instantiate_cterm"
| false => "Term_Subst.instantiate"
val instantiate = case cert of
true => "Match_Cterm.cterm_instantiate"
| false => "Match_Cterm.instantiate"
val vals = map ml_val_binding [
(posN, ML_Syntax.print_position pos),
(ml_list names_var, ml_apply pat_vars [patN]),
(envN, ml_apply match [ml_tuple [patN, ctN]]),
(ml_list names,
ml_apply "map"
[ml_atomic (ml_apply inst [envN]), ml_list names_var]),
(ml_list names_var,
ml_apply "map"
[ml_atomic (ml_apply inst [ml_tuple [ml_apply "fst" [envN], "Vars.empty"]]),
ml_list names_var])]
val instantiate = ml_fun instantiateN [ml_record names]
[ml_apply instantiate [posN, envN, ml_list names_var, ml_list names, patN]]
val inst = ml_val_binding (instN, triv_record_inst (names @ [instantiateN, ctN]))
val pat_binding = map ml_val_binding [(patN, ml_pat)]
val outer_args = if morph then [phiN] else []
val body = ml_let_binding (ml_pattern_check @ vals @ instantiate @ [inst]) instN
val args = (if cert then [] else [thyN]) @ [ctN]
val res = ml_fn args body |> space_implode "\n"
val outer_body = ml_let_binding pat_binding res
val outer_res = ml_fn outer_args outer_body |> space_implode "\n"
val _ = Utils.verbose_msg 5 ctxt (fn _ => "ml_match_cterm: " ^ outer_res)
in
outer_res
end
val parse_mode = Scan.optional
(Args.parens (
Args.$$$ "ho" >> K Higher_Order ||
Args.$$$ "fo" >> K First_Order ||
Args.$$$ "ml" >> K ML_Pattern))
Higher_Order;
val parse_morph_mode = Scan.optional
(Args.parens (
Args.$$$ "ho" >> K Higher_Order ||
Args.$$$ "fo" >> K First_Order))
Higher_Order;
end
val _ = Theory.setup
(ML_Antiquotation.value_embedded @{binding "cterm_match"}
((Args.context -- Scan.lift (Match_Cterm.parse_mode -- Parse.position Parse.embedded_inner_syntax))
>> (fn (ctxt, (mode, (pattern_str, pos))) =>
Match_Cterm.ml_match_term {morph = false, cert = true} mode ctxt pos pattern_str)) #>
(ML_Antiquotation.value_embedded @{binding "cterm_morph_match"}
((Args.context -- Scan.lift (Match_Cterm.parse_morph_mode -- Parse.position Parse.embedded_inner_syntax))
>> (fn (ctxt, (mode, (pattern_str, pos))) =>
Match_Cterm.ml_match_term {morph = true, cert = true} mode ctxt pos pattern_str))) #>
(ML_Antiquotation.value_embedded @{binding "match"}
((Args.context -- Scan.lift (Match_Cterm.parse_mode -- Parse.position Parse.embedded_inner_syntax))
>> (fn (ctxt, (mode, (pattern_str, pos))) =>
Match_Cterm.ml_match_term {morph = false, cert = false} mode ctxt pos pattern_str))) #>
(ML_Antiquotation.value_embedded @{binding "morph_match"}
((Args.context -- Scan.lift (Match_Cterm.parse_morph_mode -- Parse.position Parse.embedded_inner_syntax))
>> (fn (ctxt, (mode, (pattern_str, pos))) =>
Match_Cterm.ml_match_term {morph = true, cert = false} mode ctxt pos pattern_str))))
›
text ‹The antiquotation yields a function that matches the schematic variables of a pattern with a
@{ML_type cterm}. The matched parts are returned as @{ML_type cterm} in a record, where the
field name is derived from the original schematic variable name.
Moreover a function ‹instantiate› is returned that can be used to instantiate the matched pattern
with other @{ML_type cterm}s.
The antiquotation makes use of the kernel operations @{ML Thm.match} / @{ML Thm.first_order_match}.
These operations are efficient in the sense that no costly re-certification of subterms has
to be performed.
›
ML_val ‹
val {f, g, instantiate, ct_} = @{cterm_match "λx. ?f x + ?g x"} @{cterm "λx. p x + q x"}
val twisted = instantiate {f = g, g = f}
›
text ‹Dummy pattern can also be supplied. The matched values for the dummy patterns are not
part of the matching result but still considered in ‹instantiate›.›
ML_val ‹
val {f, g, instantiate, ...} = @{cterm_match "λx. ?f x + ?g x + _"} @{cterm "λx. p x + q + r x"}
val twisted = instantiate {f = g, g = f}
›
ML_val ‹
val {f, g, ...} = @{cterm_match "λx. ?f x + ?g x"} @{cterm "λx. p x + q"}
›
ML_val ‹
val {f1, f2, ...} = @{cterm_match "λx. ?f1.0 x + ?f2.0 x"} @{cterm "λx. p x + q"}
›
ML_val ‹
val {f, ...} = @{cterm_match "λx. ?f x"} @{cterm ‹λx. f›}
›
text ‹There is also a variant for first-order-matching.›
ML_val ‹
let
val _ = @{cterm_match (fo) "λx. ?f x"} @{cterm ‹λx. f›}
in
()
end
handle Pattern.MATCH => tracing ("this is not first order")
›
text ‹There is also the corresponding antiquotations for plain terms.›
ML_val ‹
val {f, g, instantiate, ...} = @{match "λx. ?f x + ?g x"} @{theory} @{term "λx. p x + q x"}
val twisted = instantiate {f = g, g = f}
›
text ‹There you can also see the different workings of first-order-matching. Note the
eta expanded match result in the higher-order variant before.›
ML_val ‹
val {f, g, instantiate, ...} = @{match (fo) "λx. ?f x + ?g x"} @{theory} @{term "λx. p x + q x"}
val twisted = instantiate {f = g, g = f}
›
text ‹There is a variant for ML-pattern-matching. This means, that before using
first-order-matching it is tested whether the term actually matches the underlying
ML-pattern with ML-pattern matching. ›
ML_val ‹
val {f, g, instantiate, ...} = @{cterm_match (ml) "λx. ?f x + ?g x"} @{cterm "λx. p x + q x"}
val twisted = instantiate {f = g, g = f}
›
text ‹Note that as with all ML-Patterns a variable might only appear once. So the following
example is a valid first-order or higher-order pattern but not a valid ML-pattern›
ML_val ‹
val {f, ...} = @{cterm_match "?f + ?f"} @{cterm "a + a"}
›
text ‹This is what happens conceptually in the expanded antiquotation.›
ML_val ‹
val ctxt = @{context}
val pat = Proof_Context.read_term_pattern ctxt "λx. ?f x + ?g x" |> Thm.cterm_of ctxt
val [g_var, f_var] = Term.add_vars (Thm.term_of pat) [] |> map (Thm.cterm_of ctxt o Var)
val env = Thm.match (pat, @{cterm "λx. a x + b"})
val [f, g] = map (Thm.instantiate_cterm env) [f_var, g_var]
val tenv = fst env
val [f_var, g_var] = map (Thm.instantiate_cterm (tenv, Vars.empty)) [f_var, g_var]
fun instantiate {f, g} =
Match_Cterm.cterm_instantiate Position.none env [f_var, g_var] [f, g]
val res = {f = f, g = g, instantiate = instantiate}
val x= instantiate {f=g, g=f}
›
text ‹With the verbose flag you can see the generated function.›
declare [[verbose=5]]
ML_val ‹
val X = @{cterm_match "?X + _"} @{cterm ‹a + a›}
›
ML_val ‹
val X = @{cterm_morph_match "?X + _"} Morphism.identity @{cterm ‹a + a›}
›
ML_val ‹
val X = @{morph_match "?X + _"} Morphism.identity @{theory} @{term ‹a + a›}
›
ML_val ‹
val X = @{cterm_match ‹?X + _›} @{cterm ‹a + a›}
›
declare [[verbose=0]]
end