Theory HOL-Proofs-Lambda.Commutation
section ‹Abstract commutation and confluence notions›
theory Commutation
imports Main
begin
declare [[syntax_ambiguity_warning = false]]
subsection ‹Basic definitions›
definition
  square :: "['a => 'a => bool, 'a => 'a => bool, 'a => 'a => bool, 'a => 'a => bool] => bool" where
  "square R S T U =
    (∀x y. R x y --> (∀z. S x z --> (∃u. T y u ∧ U z u)))"
definition
  commute :: "['a => 'a => bool, 'a => 'a => bool] => bool" where
  "commute R S = square R S S R"
definition
  diamond :: "('a => 'a => bool) => bool" where
  "diamond R = commute R R"
definition
  Church_Rosser :: "('a => 'a => bool) => bool" where
  "Church_Rosser R =
    (∀x y. (sup R (R¯¯))⇧*⇧* x y ⟶ (∃z. R⇧*⇧* x z ∧ R⇧*⇧* y z))"
abbreviation
  confluent :: "('a => 'a => bool) => bool" where
  "confluent R == diamond (R⇧*⇧*)"
subsection ‹Basic lemmas›
subsubsection ‹‹square››
lemma square_sym: "square R S T U ==> square S R U T"
  apply (unfold square_def)
  apply blast
  done
lemma square_subset:
    "[| square R S T U; T ≤ T' |] ==> square R S T' U"
  apply (unfold square_def)
  apply (blast dest: predicate2D)
  done
lemma square_reflcl:
    "[| square R S T (R⇧=⇧=); S ≤ T |] ==> square (R⇧=⇧=) S T (R⇧=⇧=)"
  apply (unfold square_def)
  apply (blast dest: predicate2D)
  done
lemma square_rtrancl:
    "square R S S T ==> square (R⇧*⇧*) S S (T⇧*⇧*)"
  apply (unfold square_def)
  apply (intro strip)
  apply (erule rtranclp_induct)
   apply blast
  apply (blast intro: rtranclp.rtrancl_into_rtrancl)
  done
lemma square_rtrancl_reflcl_commute:
    "square R S (S⇧*⇧*) (R⇧=⇧=) ==> commute (R⇧*⇧*) (S⇧*⇧*)"
  apply (unfold commute_def)
  apply (fastforce dest: square_reflcl square_sym [THEN square_rtrancl])
  done
subsubsection ‹‹commute››
lemma commute_sym: "commute R S ==> commute S R"
  apply (unfold commute_def)
  apply (blast intro: square_sym)
  done
lemma commute_rtrancl: "commute R S ==> commute (R⇧*⇧*) (S⇧*⇧*)"
  apply (unfold commute_def)
  apply (blast intro: square_rtrancl square_sym)
  done
lemma commute_Un:
    "[| commute R T; commute S T |] ==> commute (sup R S) T"
  apply (unfold commute_def square_def)
  apply blast
  done
subsubsection ‹‹diamond›, ‹confluence›, and ‹union››
lemma diamond_Un:
    "[| diamond R; diamond S; commute R S |] ==> diamond (sup R S)"
  apply (unfold diamond_def)
  apply (blast intro: commute_Un commute_sym) 
  done
lemma diamond_confluent: "diamond R ==> confluent R"
  apply (unfold diamond_def)
  apply (erule commute_rtrancl)
  done
lemma square_reflcl_confluent:
    "square R R (R⇧=⇧=) (R⇧=⇧=) ==> confluent R"
  apply (unfold diamond_def)
  apply (fast intro: square_rtrancl_reflcl_commute elim: square_subset)
  done
lemma confluent_Un:
    "[| confluent R; confluent S; commute (R⇧*⇧*) (S⇧*⇧*) |] ==> confluent (sup R S)"
  apply (rule rtranclp_sup_rtranclp [THEN subst])
  apply (blast dest: diamond_Un intro: diamond_confluent)
  done
lemma diamond_to_confluence:
    "[| diamond R; T ≤ R; R ≤ T⇧*⇧* |] ==> confluent T"
  apply (force intro: diamond_confluent
    dest: rtranclp_subset [symmetric])
  done
subsection ‹Church-Rosser›
lemma Church_Rosser_confluent: "Church_Rosser R = confluent R"
  apply (unfold square_def commute_def diamond_def Church_Rosser_def)
  apply (tactic ‹safe_tac (put_claset HOL_cs \<^context>)›)
   apply (tactic ‹
     blast_tac (put_claset HOL_cs \<^context> addIs
       [@{thm sup_ge2} RS @{thm rtranclp_mono} RS @{thm predicate2D} RS @{thm rtranclp_trans},
        @{thm rtranclp_converseI}, @{thm conversepI},
        @{thm sup_ge1} RS @{thm rtranclp_mono} RS @{thm predicate2D}]) 1›)
  apply (erule rtranclp_induct)
   apply blast
  apply (blast del: rtranclp.rtrancl_refl intro: rtranclp_trans)
  done
subsection ‹Newman's lemma›
text ‹Proof by Stefan Berghofer›
theorem newman:
  assumes wf: "wfP (R¯¯)"
  and lc: "⋀a b c. R a b ⟹ R a c ⟹
    ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d"
  shows "⋀b c. R⇧*⇧* a b ⟹ R⇧*⇧* a c ⟹
    ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d"
  using wf
proof induct
  case (less x b c)
  have xc: "R⇧*⇧* x c" by fact
  have xb: "R⇧*⇧* x b" by fact thus ?case
  proof (rule converse_rtranclpE)
    assume "x = b"
    with xc have "R⇧*⇧* b c" by simp
    thus ?thesis by iprover
  next
    fix y
    assume xy: "R x y"
    assume yb: "R⇧*⇧* y b"
    from xc show ?thesis
    proof (rule converse_rtranclpE)
      assume "x = c"
      with xb have "R⇧*⇧* c b" by simp
      thus ?thesis by iprover
    next
      fix y'
      assume y'c: "R⇧*⇧* y' c"
      assume xy': "R x y'"
      with xy have "∃u. R⇧*⇧* y u ∧ R⇧*⇧* y' u" by (rule lc)
      then obtain u where yu: "R⇧*⇧* y u" and y'u: "R⇧*⇧* y' u" by iprover
      from xy have "R¯¯ y x" ..
      from this and yb yu have "∃d. R⇧*⇧* b d ∧ R⇧*⇧* u d" by (rule less)
      then obtain v where bv: "R⇧*⇧* b v" and uv: "R⇧*⇧* u v" by iprover
      from xy' have "R¯¯ y' x" ..
      moreover from y'u and uv have "R⇧*⇧* y' v" by (rule rtranclp_trans)
      moreover note y'c
      ultimately have "∃d. R⇧*⇧* v d ∧ R⇧*⇧* c d" by (rule less)
      then obtain w where vw: "R⇧*⇧* v w" and cw: "R⇧*⇧* c w" by iprover
      from bv vw have "R⇧*⇧* b w" by (rule rtranclp_trans)
      with cw show ?thesis by iprover
    qed
  qed
qed
text ‹
  Alternative version.  Partly automated by Tobias
  Nipkow. Takes 2 minutes (2002).
  This is the maximal amount of automation possible using ‹blast›.
›
theorem newman':
  assumes wf: "wfP (R¯¯)"
  and lc: "⋀a b c. R a b ⟹ R a c ⟹
    ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d"
  shows "⋀b c. R⇧*⇧* a b ⟹ R⇧*⇧* a c ⟹
    ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d"
  using wf
proof induct
  case (less x b c)
  note IH = ‹⋀y b c. ⟦R¯¯ y x; R⇧*⇧* y b; R⇧*⇧* y c⟧
                     ⟹ ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d›
  have xc: "R⇧*⇧* x c" by fact
  have xb: "R⇧*⇧* x b" by fact
  thus ?case
  proof (rule converse_rtranclpE)
    assume "x = b"
    with xc have "R⇧*⇧* b c" by simp
    thus ?thesis by iprover
  next
    fix y
    assume xy: "R x y"
    assume yb: "R⇧*⇧* y b"
    from xc show ?thesis
    proof (rule converse_rtranclpE)
      assume "x = c"
      with xb have "R⇧*⇧* c b" by simp
      thus ?thesis by iprover
    next
      fix y'
      assume y'c: "R⇧*⇧* y' c"
      assume xy': "R x y'"
      with xy obtain u where u: "R⇧*⇧* y u" "R⇧*⇧* y' u"
        by (blast dest: lc)
      from yb u y'c show ?thesis
        by (blast del: rtranclp.rtrancl_refl
            intro: rtranclp_trans
            dest: IH [OF conversepI, OF xy] IH [OF conversepI, OF xy'])
    qed
  qed
qed
text ‹
  Using the coherent logic prover, the proof of the induction step
  is completely automatic.
›
lemma eq_imp_rtranclp: "x = y ⟹ r⇧*⇧* x y"
  by simp
theorem newman'':
  assumes wf: "wfP (R¯¯)"
  and lc: "⋀a b c. R a b ⟹ R a c ⟹
    ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d"
  shows "⋀b c. R⇧*⇧* a b ⟹ R⇧*⇧* a c ⟹
    ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d"
  using wf
proof induct
  case (less x b c)
  note IH = ‹⋀y b c. ⟦R¯¯ y x; R⇧*⇧* y b; R⇧*⇧* y c⟧
                     ⟹ ∃d. R⇧*⇧* b d ∧ R⇧*⇧* c d›
  show ?case
    by (coherent
      ‹R⇧*⇧* x c› ‹R⇧*⇧* x b›
      refl [where 'a='a] sym
      eq_imp_rtranclp
      r_into_rtranclp [of R]
      rtranclp_trans
      lc IH [OF conversepI]
      converse_rtranclpE)
qed
end