Theory P2S2R
section ‹Isomorphisms Between Predicates, Sets and Relations›
theory P2S2R
imports Main
begin
notation relcomp (infixl ";" 70)
notation inf (infixl "⊓" 70)
notation sup (infixl "⊔" 65)
notation Id_on ("s2r")
notation Domain ("r2s")
notation Collect ("p2s")
definition rel_n :: "'a rel ⇒ 'a rel" where
"rel_n ≡ (λX. Id ∩ - X)"
lemma subid_meet: "R ⊆ Id ⟹ S ⊆ Id ⟹ R ∩ S = R ; S"
by blast
subsection‹Isomorphism Between Sets and Relations›
lemma srs: "r2s ∘ s2r = id"
by auto
lemma rsr: "R ⊆ Id ⟹ s2r (r2s R) = R"
by (auto simp: Id_def Id_on_def Domain_def)
lemma s2r_inj: "inj s2r"
by (metis Domain_Id_on injI)
lemma r2s_inj: "R ⊆ Id ⟹ S ⊆ Id ⟹ r2s R = r2s S ⟹ R = S"
by (metis rsr)
lemma s2r_surj: "∀R ⊆ Id. ∃A. R = s2r A"
using rsr by auto
lemma r2s_surj: "∀A. ∃R ⊆ Id. A = r2s R"
by (metis Domain_Id_on Id_onE pair_in_Id_conv subsetI)
lemma s2r_union_hom: "s2r (A ∪ B) = s2r A ∪ s2r B"
by (simp add: Id_on_def)
lemma s2r_inter_hom: "s2r (A ∩ B) = s2r A ∩ s2r B"
by (auto simp: Id_on_def)
lemma s2r_inter_hom_var: "s2r (A ∩ B) = s2r A ; s2r B"
by (auto simp: Id_on_def)
lemma s2r_compl_hom: "s2r (- A) = rel_n (s2r A)"
by (auto simp add: rel_n_def)
lemma r2s_union_hom: "r2s (R ∪ S) = r2s R ∪ r2s S"
by auto
lemma r2s_inter_hom: "R ⊆ Id ⟹ S ⊆ Id ⟹ r2s (R ∩ S) = r2s R ∩ r2s S"
by auto
lemma r2s_inter_hom_var: "R ⊆ Id ⟹ S ⊆ Id ⟹ r2s (R ; S) = r2s R ∩ r2s S"
by (metis r2s_inter_hom subid_meet)
lemma r2s_ad_hom: "R ⊆ Id ⟹ r2s (rel_n R) = - r2s R"
by (metis r2s_surj rsr s2r_compl_hom)
subsection ‹Isomorphism Between Predicates and Sets›
type_synonym 'a pred = "'a ⇒ bool"
definition s2p :: "'a set ⇒ 'a pred" where
"s2p S = (λx. x ∈ S)"
lemma sps [simp]: "s2p ∘ p2s = id"
by (intro ext, simp add: s2p_def)
lemma psp [simp]: "p2s ∘ s2p = id"
by (intro ext, simp add: s2p_def)
lemma s2p_bij: "bij s2p"
using o_bij psp sps by blast
lemma p2s_bij: "bij p2s"
using o_bij psp sps by blast
lemma s2p_compl_hom: "s2p (- A) = - (s2p A)"
by (metis Collect_mem_eq comp_eq_dest_lhs id_apply sps uminus_set_def)
lemma s2p_inter_hom: "s2p (A ∩ B) = (s2p A) ⊓ (s2p B)"
by (metis Collect_mem_eq comp_eq_dest_lhs id_apply inf_set_def sps)
lemma s2p_union_hom: "s2p (A ∪ B) = (s2p A) ⊔ (s2p B)"
by (auto simp: s2p_def)
lemma p2s_neg_hom: "p2s (- P) = - (p2s P)"
by fastforce
lemma p2s_conj_hom: "p2s (P ⊓ Q) = p2s P ∩ p2s Q"
by blast
lemma p2s_disj_hom: "p2s (P ⊔ Q) = p2s P ∪ p2s Q"
by blast
subsection ‹Isomorphism Between Predicates and Relations›
definition p2r :: "'a pred ⇒ 'a rel" where
"p2r P = {(s,s) |s. P s}"
definition r2p :: "'a rel ⇒ 'a pred" where
"r2p R = (λx. x ∈ Domain R)"
lemma p2r_subid: "p2r P ⊆ Id"
by (simp add: p2r_def subset_eq)
lemma p2s2r: "p2r = s2r ∘ p2s"
proof (intro ext)
fix P :: "'a pred"
have "{(a, a) |a. P a} = {(b, a). b = a ∧ P b}"
by blast
thus "p2r P = (s2r ∘ p2s) P"
by (simp add: Id_on_def' p2r_def)
qed
lemma r2s2p: "r2p = s2p ∘ r2s"
by (intro ext, simp add: r2p_def s2p_def)
lemma prp [simp]: "r2p ∘ p2r = id"
by (intro ext, simp add: p2s2r r2p_def)
lemma rpr: "R ⊆ Id ⟹ p2r (r2p R) = R"
by (metis comp_apply id_apply p2s2r psp r2s2p rsr)
lemma p2r_inj: "inj p2r"
by (metis comp_eq_dest_lhs id_apply injI prp)
lemma r2p_inj: "R ⊆ Id ⟹ S ⊆ Id ⟹ r2p R = r2p S ⟹ R = S"
by (metis rpr)
lemma p2r_surj: "∀ R ⊆ Id. ∃P. R = p2r P"
using rpr by auto
lemma r2p_surj: "∀P. ∃R ⊆ Id. P = r2p R"
by (metis comp_apply id_apply p2r_subid prp)
lemma p2r_neg_hom: "p2r (- P) = rel_n (p2r P)"
by (simp add: p2s2r p2s_neg_hom s2r_compl_hom)
lemma p2r_conj_hom [simp]: "p2r P ∩ p2r Q = p2r (P ⊓ Q)"
by (simp add: p2s2r p2s_conj_hom s2r_inter_hom)
lemma p2r_conj_hom_var [simp]: "p2r P ; p2r Q = p2r (P ⊓ Q)"
by (simp add: p2s2r p2s_conj_hom s2r_inter_hom_var)
lemma p2r_id_neg [simp]: "Id ∩ - p2r p = p2r (-p)"
by (auto simp: p2r_def)
lemma [simp]: "p2r bot = {}"
by (auto simp: p2r_def)
lemma p2r_disj_hom [simp]: "p2r P ∪ p2r Q = p2r (P ⊔ Q)"
by (simp add: p2s2r p2s_disj_hom s2r_union_hom)
lemma r2p_ad_hom: "R ⊆ Id ⟹ r2p (rel_n R) = - (r2p R)"
by (simp add: r2s2p r2s_ad_hom s2p_compl_hom)
lemma r2p_inter_hom: "R ⊆ Id ⟹ S ⊆ Id ⟹ r2p (R ∩ S) = (r2p R) ⊓ (r2p S)"
by (simp add: r2s2p r2s_inter_hom s2p_inter_hom)
lemma r2p_inter_hom_var: "R ⊆ Id ⟹ S ⊆ Id ⟹ r2p (R ; S) = (r2p R) ⊓ (r2p S)"
by (simp add: r2s2p r2s_inter_hom_var s2p_inter_hom)
lemma rel_to_pred_union_hom: "R ⊆ Id ⟹ S ⊆ Id ⟹ r2p (R ∪ S) = (r2p R) ⊔ (r2p S)"
by (simp add: Domain_Un_eq r2s2p s2p_union_hom)
end