Theory HOL-IMP.Abs_Int_Tests
subsection "Abstract Interpretation Test Programs"
theory Abs_Int_Tests
imports Com
begin
text‹For constant propagation:›
text‹Straight line code:›
definition "test1_const =
''y'' ::= N 7;;
''z'' ::= Plus (V ''y'') (N 2);;
''y'' ::= Plus (V ''x'') (N 0)"
text‹Conditional:›
definition "test2_const =
IF Less (N 41) (V ''x'') THEN ''x'' ::= N 5 ELSE ''x'' ::= N 5"
text‹Conditional, test is relevant:›
definition "test3_const =
''x'' ::= N 42;;
IF Less (N 41) (V ''x'') THEN ''x'' ::= N 5 ELSE ''x'' ::= N 6"
text‹While:›
definition "test4_const =
''x'' ::= N 0;; WHILE Bc True DO ''x'' ::= N 0"
text‹While, test is relevant:›
definition "test5_const =
''x'' ::= N 0;; WHILE Less (V ''x'') (N 1) DO ''x'' ::= N 1"
text‹Iteration is needed:›
definition "test6_const =
''x'' ::= N 0;; ''y'' ::= N 0;; ''z'' ::= N 2;;
WHILE Less (V ''x'') (N 1) DO (''x'' ::= V ''y'';; ''y'' ::= V ''z'')"
text‹For intervals:›
definition "test1_ivl =
''y'' ::= N 7;;
IF Less (V ''x'') (V ''y'')
THEN ''y'' ::= Plus (V ''y'') (V ''x'')
ELSE ''x'' ::= Plus (V ''x'') (V ''y'')"
definition "test2_ivl =
WHILE Less (V ''x'') (N 100)
DO ''x'' ::= Plus (V ''x'') (N 1)"
definition "test3_ivl =
''x'' ::= N 0;;
WHILE Less (V ''x'') (N 100)
DO ''x'' ::= Plus (V ''x'') (N 1)"
definition "test4_ivl =
''x'' ::= N 0;; ''y'' ::= N 0;;
WHILE Less (V ''x'') (N 11)
DO (''x'' ::= Plus (V ''x'') (N 1);; ''y'' ::= Plus (V ''y'') (N 1))"
definition "test5_ivl =
''x'' ::= N 0;; ''y'' ::= N 0;;
WHILE Less (V ''x'') (N 100)
DO (''y'' ::= V ''x'';; ''x'' ::= Plus (V ''x'') (N 1))"
definition "test6_ivl =
''x'' ::= N 0;;
WHILE Less (N (- 1)) (V ''x'') DO ''x'' ::= Plus (V ''x'') (N 1)"
end