
Refinement Framework Userguide

By Peter Lammich

May 24, 2012

1

Contents

1 Introduction 3

2 Guided Tour 3
2.1 Defining Programs . 3
2.2 Proving Programs Correct . 4
2.3 Refinement . 6
2.4 Code Generation . 9
2.5 Foreach-Loops . 11

3 Pointwise Reasoning 13

4 Arbitrary Recursion (TBD) 14

5 Reference 14
5.1 Statements . 14
5.2 Refinement . 15
5.3 Proof Tools . 16
5.4 Packages . 18

2

1 Introduction

The Isabelle/HOL refinement framework is a library that supports program
and data refinement.

Programs are specified using a nondeterminism monad: An element of the
monad type is either a set of results, or the special element FAIL, that
indicates a failed assertion.

The bind-operation of the monad applies a function to all elements of the
result-set, and joins all possible results.

On the monad type, an ordering ≤ is defined, that is lifted subset ordering,
where FAIL is the greatest element. Intuitively, S ≤ S ′ means that program
S refines program S ′, i.e., all results of S are also results of S ′, and S may
only fail if S ′ also fails.

2 Guided Tour

In this section, we provide a small example program development in our
framework. All steps of the development are heavily commented.

2.1 Defining Programs

A program is defined using the Haskell-like do-notation, that is provided
by the Isabelle/HOL library. We start with a simple example, that iterates
over a set of numbers, and computes the maximum value and the sum of all
elements.

definition sum-max :: nat set ⇒ (nat×nat) nres where
sum-max V ≡ do {

(-,s,m) ← WHILE (λ(V ,s,m). V 6={}) (λ(V ,s,m). do {
x←SPEC (λx . x∈V);
let V =V−{x};
let s=s+x ;
let m=max m x ;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

The type of the nondeterminism monad is ′a nres, where ′a is the type of
the results. Note that this program has only one possible result, however,
the order in which we iterate over the elements of the set is unspecified.

This program uses the following statements provided by our framework:
While-loops, bindings, return, and specification. We briefly explain the
statements here. A complete reference can be found in Section 5.1.

3

A while-loop has the form WHILE b f σ0, where b is the continuation
condition, f is the loop body, and σ0 is the initial state. In our case, the
state used for the loop is a triple (V , s, m), where V is the set of remaining
elements, s is the sum of the elements seen so far, and m is the maximum of
the elements seen so far. The WHILE b f σ0 construct describes a partially
correct loop, i.e., it describes only those results that can be reached by
finitely many iterations, and ignores infinite paths of the loop. In order to
prove total correctness, the construct WHILET b f σ0 is used. It fails if
there exists an infinite execution of the loop.

A binding do {x←(S 1::
′a nres); S 2} nondeterministically chooses a result

of S 1, binds it to variable x, and then continues with S 2. If S 1 is FAIL, the
bind statement also fails.

The syntactic form do { let x=V ; (S :: ′a ⇒ ′b nres)} assigns the value V to
variable x, and continues with S.

The return statement RETURN x specifies precisely the result x.

The specification statement SPEC Φ describes all results that satisfy the
predicate Φ. This is the source of nondeterminism in programs, as there
may be more than one such result. In our case, we describe any element of
set V.

Note that these statement are shallowly embedded into Isabelle/HOL, i.e.,
they are ordinary Isabelle/HOL constants. The main advantage is, that
any other construct and datatype from Isabelle/HOL may be used inside
programs. In our case, we use Isabelle/HOL’s predefined operations on sets
and natural numbers. Another advantage is that extending the framework
with new commands becomes fairly easy.

2.2 Proving Programs Correct

The next step in the program development is to prove the program correct
w.r.t. a specification. In refinement notion, we have to prove that the pro-
gram S refines a specification Φ if the precondition Ψ holds, i.e., Ψ =⇒ S
≤ SPEC Φ.

For our purposes, we prove that sum-max really computes the sum and the
maximum.

As usual, we have to think of a loop invariant first. In our case, this is
rather straightforward. The main complication is introduced by the partially
defined Max -operator of the Isabelle/HOL standard library.

definition sum-max-invar V 0 ≡ λ(V ,s::nat ,m).
V⊆V 0

∧ s=
∑

(V 0−V)
∧ m=(if (V 0−V)={} then 0 else Max (V 0−V))
∧ finite (V 0−V)

4

We have extracted the most complex verification condition — that the in-
variant is preserved by the loop body — to an own lemma. For complex
proofs, it is always a good idea to do that, as it makes the proof more
readable.

lemma sum-max-invar-step:
assumes x∈V sum-max-invar V 0 (V ,s,m)
shows sum-max-invar V 0 (V−{x},s+x ,max m x)

In our case the proof is rather straightforward, it only requires the lemma it-step-insert-iff,
that handles the V 0 − (V − {x}) terms that occur in the invariant.

using assms unfolding sum-max-invar-def by (auto simp: it-step-insert-iff)

The correctness is now proved by first invoking the verification condition
generator, and then discharging the verification conditions by auto. Note
that we have to apply the sum-max-invar-step lemma, before we unfold the
definition of the invariant to discharge the remaining verification conditions.

theorem sum-max-correct :
assumes PRE : V 6={}
shows sum-max V ≤ SPEC (λ(s,m). s=

∑
V ∧ m=Max V)

The precondition V 6={} is necessary, as the Max -operator from Isabelle/HOL’s
standard library is not defined for empty sets.

using PRE unfolding sum-max-def
apply (intro WHILE-rule[where I =sum-max-invar V] refine-vcg) — Invoke vcg

Note that we have explicitely instantiated the rule for the while-loop with the
invariant. If this is not done, the verification condition generator will stop at the
WHILE-loop.

apply (auto intro: sum-max-invar-step) — Discharge step
unfolding sum-max-invar-def — Unfold invariant definition
apply (auto) — Discharge remaining goals
done

In this proof, we specified the invariant explicitely. Alternatively, we may
annotate the invariant at the while loop, using the syntax WHILE I b f σ0.
Then, the verification condition generator will use the annotated invariant
automatically.

Total Correctness Now, we reformulate our program to use a total cor-
rect while loop, and annotate the invariant at the loop. The invariant is
strengthened by stating that the set of elements is finite.

definition sum-max ′-invar V 0 σ ≡
sum-max-invar V 0 σ
∧ (let (V ,-,-)=σ in finite (V 0−V))

definition sum-max ′ :: nat set ⇒ (nat×nat) nres where

5

sum-max ′ V ≡ do {
(-,s,m) ← WHILET

sum-max ′-invar V (λ(V ,s,m). V 6={}) (λ(V ,s,m). do {
x←SPEC (λx . x∈V);
let V =V−{x};
let s=s+x ;
let m=max m x ;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

theorem sum-max ′-correct :
assumes NE : V 6={} and FIN : finite V
shows sum-max ′ V ≤ SPEC (λ(s,m). s=

∑
V ∧ m=Max V)

using NE FIN unfolding sum-max ′-def
apply (intro refine-vcg) — Invoke vcg

This time, the verification condition generator uses the annotated invariant. More-
over, it leaves us with a variant. We have to specify a well-founded relation, and
show that the loop body respects this relation. In our case, the set V decreases in
each step, and is initially finite. We use the relation finite-psubset and the inv-image
combinator from the Isabelle/HOL standard library.

apply (subgoal-tac wf (inv-image finite-psubset fst),
assumption) — Instantiate variant

apply simp — Show variant well-founded

unfolding sum-max ′-invar-def — Unfold definition of invariant
apply (auto intro: sum-max-invar-step) — Discharge step

unfolding sum-max-invar-def — Unfold definition of invariant completely
apply (auto intro: finite-subset) — Discharge remaining goals
done

2.3 Refinement

The next step in the program development is to refine the initial program
towards an executable program. This usually involves both, program refine-
ment and data refinement. Program refinement means changing the struc-
ture of the program. Usually, some specification statements are replaced by
more concrete implementations. Data refinement means changing the used
data types towards implementable data types.

In our example, we implement the set V with a distinct list, and replace
the specification statement SPEC (λx . x ∈ V) by the head operation on
distinct lists. For the lists, we use the list-set data structure provided by
the Isabelle Collection Framework [1, 2].

For this example, we write the refined program ourselves. An automation of

6

this task can be achieved with the automatic refinement tool, which is avail-
able as a prototype in Refine-Autoref. Usage examples are in ex/Automatic-
Refinement.

definition sum-max-impl :: nat ls ⇒ (nat×nat) nres where
sum-max-impl V ≡ do {

(-,s,m) ← WHILE (λ(V ,s,m). ¬ls-isEmpty V) (λ(V ,s,m). do {
x←RETURN (the (ls-sel ′ V (λx . True)));
let V =ls-delete x V ;
let s=s+x ;
let m=max m x ;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

Note that we replaced the operations on sets by the respective operations
on lists (with the naming scheme ls-xxx). The specification statement was
replaced by the (ls-sel ′ V (λx . True)), i.e., selection of an element that
satisfies the predicate λx . True. As ls-sel ′ returns an option datatype, we
extract the value with the. Moreover, we omitted the loop invariant, as we
don’t need it any more.

Next, we have to show that our concrete pogram actually refines the abstract
one.

theorem sum-max-impl-refine:
assumes (V ,V ′)∈build-rel ls-α ls-invar
shows sum-max-impl V ≤ ⇓Id (sum-max V ′)

Let R be a refinement relation1, that relates concrete and abstract values.

Then, the function ⇓ R maps a result-set over abstract values to the greatest result-
set over concrete values that is compatible w.r.t. R. The value FAIL is mapped to
itself.

Thus, the proposition S ≤ ⇓ R S ′ means, that S refines S ′ w.r.t. R, i.e., every value
in the result of S can be abstracted to a value in the result of S ′.

Usually, the refinement relation consists of an invariant I and an abstraction func-
tion α. In this case, we may use the br I α-function to define the refinement
relation.

In our example, we assume that the input is in the refinement relation specified by
list-sets, and show that the output is in the identity relation. We use the identity
here, as we do not change the datatypes of the output.

The proof is done automatically by the refinement verification condition genera-
tor. Note that the theory Collection-Bindings sets up all the necessary lemmas to
discharge refinement conditions for the collection framework.

using assms unfolding sum-max-impl-def sum-max-def
apply (refine-rcg) — Decompose combinators, generate data refinement goals

1Also called coupling invariant.

7

apply (refine-dref-type) — Type-based heuristics to instantiate data refinement
goals

apply (auto simp add : ls-correct refine-hsimp) — Discharge proof obligations
done

Refinement is transitive, so it is easy to show that the concrete program
meets the specification.

theorem sum-max-impl-correct :
assumes (V ,V ′)∈build-rel ls-α ls-invar and V ′6={}
shows sum-max-impl V ≤ SPEC (λ(s,m). s=

∑
V ′ ∧ m=Max V ′)

proof −
note sum-max-impl-refine
also note sum-max-correct
finally show ?thesis using assms .

qed

Just for completeness, we also refine the total correct program in the same
way.

definition sum-max ′-impl :: nat ls ⇒ (nat×nat) nres where
sum-max ′-impl V ≡ do {

(-,s,m) ← WHILET (λ(V ,s,m). ¬ls-isEmpty V) (λ(V ,s,m). do {
x←RETURN (the (ls-sel ′ V (λx . True)));
let V =ls-delete x V ;
let s=s+x ;
let m=max m x ;
RETURN (V ,s,m)
}) (V ,0 ,0);
RETURN (s,m)
}

theorem sum-max ′-impl-refine:
(V ,V ′)∈build-rel ls-α ls-invar =⇒ sum-max ′-impl V ≤ ⇓Id (sum-max ′ V ′)
unfolding sum-max ′-impl-def sum-max ′-def
apply refine-rcg
apply refine-dref-type
apply (auto simp: refine-hsimp ls-correct)
done

theorem sum-max ′-impl-correct :
assumes (V ,V ′)∈build-rel ls-α ls-invar and V ′6={}
shows sum-max ′-impl V ≤ SPEC (λ(s,m). s=

∑
V ′ ∧ m=Max V ′)

using ref-two-step[OF sum-max ′-impl-refine sum-max ′-correct] assms

Note that we do not need the finiteness precondition, as list-sets are always finite.
However, in order to exploit this, we have to unfold the build-rel construct, that
relates the list-set on the concrete side to the set on the abstract side.

apply (auto simp: build-rel-def)
done

8

2.4 Code Generation

In order to generate code from the above definitions, we convert the function
defined in our monad to an ordinary, deterministic function, for that the
Isabelle/HOL code generator can generate code.

For partial correct algorithms, we can generate code inside a deterministic
result monad. The domain of this monad is a flat complete lattice, where top
means a failed assertion and bottom means nontermination. (Note that exe-
cuting a function in this monad will never return bottom, but just diverge).
The construct nres-of x embeds the deterministic into the nondeterministic
monad.

Thus, we have to construct a function ?sum-max-code such that:

schematic-lemma sum-max-code-aux : nres-of ?sum-max-code ≤ sum-max-impl V

This is done automatically by the transfer procedure of our framework.

unfolding sum-max-impl-def
apply (refine-transfer)+
done

This generated the function as a lemma. In order to define it, in our (pro-
totype) framework, we have to copy the function and make a definition of
it. We use the output of the following command:

thm sum-max-code-aux [no-vars]
definition sum-max-code :: nat ls ⇒ (nat×nat) dres where

sum-max-code V ≡
(dWHILE (λ(V , s, m). ¬ ls-isEmpty V)

(λ(a, b).
case b of
(aa, ba) ⇒

dRETURN (the (ls-sel ′ a (λx . True))) �=
(λxa. let xb = ls-delete xa a; xc = aa + xa; xd = max ba xa

in dRETURN (xb, xc, xd)))
(V , 0 , 0) �=

(λ(a, b). case b of (aa, ba) ⇒ dRETURN (aa, ba)))

A simple folding gives us the desired refinement lemma

theorem sum-max-code-refine: nres-of (sum-max-code V) ≤ sum-max-impl V
using sum-max-code-aux [folded sum-max-code-def] .

Finally, we can prove a correctness statement that is independent from our
refinement framework:

theorem sum-max-code-correct :
assumes ls-α V 6= {}
shows sum-max-code V = dRETURN (s,m) =⇒ s=

∑
(ls-α V) ∧ m=Max (ls-α

V)

9

and sum-max-code V 6= dFAIL

The proof is done by transitivity, and unfolding some definitions:

using nres-correctD [OF order-trans[OF sum-max-code-refine sum-max-impl-correct ,
of V ls-α V]] assms

by auto

For total correctness, the approach is the same. The only difference is, that
we use RETURN instead of nres-of :

schematic-lemma sum-max ′-code-aux :
RETURN ?sum-max ′-code ≤ sum-max ′-impl V
unfolding sum-max ′-impl-def
apply (refine-transfer)
done

thm sum-max ′-code-aux [no-vars]
definition sum-max ′-code :: nat ls ⇒ (nat×nat) where

sum-max ′-code V ≡
(let (a, b) =

while (λ(V , s, m). ¬ ls-isEmpty V)
(λ(a, b).

case b of
(aa, ba) ⇒

let xa = the (ls-sel ′ a (λx . True)); xb = ls-delete xa a;
xc = aa + xa; xd = max ba xa

in (xb, xc, xd))
(V , 0 , 0)

in case b of (aa, ba) ⇒ (aa, ba))

theorem sum-max ′-code-refine: RETURN (sum-max ′-code V) ≤ sum-max ′-impl
V

using sum-max ′-code-aux [folded sum-max ′-code-def] .

theorem sum-max ′-code-correct :
[[ls-α V 6= {}]] =⇒ sum-max ′-code V = (

∑
(ls-α V), Max (ls-α V))

using order-trans[OF sum-max ′-code-refine sum-max ′-impl-correct ,
of V ls-α V]

by auto

If we use recursion combinators, a plain function can only be generated,
if the recursion combinators can be defined. Alternatively, for total cor-
rect programs, we may generate a (plain) function that internally uses the
deterministic monad, and then extracts the result.

schematic-lemma sum-max ′′-code-aux :
RETURN ?sum-max ′′-code ≤ sum-max ′-impl V
unfolding sum-max ′-impl-def
apply (refine-transfer the-resI) — Using the-resI for internal monad and result

extraction

10

done

thm sum-max ′′-code-aux [no-vars]
definition sum-max ′′-code :: nat ls ⇒ (nat×nat) where

sum-max ′′-code V ≡
(the-res

(dWHILET (λ(V , s, m). ¬ ls-isEmpty V)
(λ(a, b).

case b of
(aa, ba) ⇒

dRETURN (the (ls-sel ′ a (λx . True))) �=
(λxa. let xb = ls-delete xa a; xc = aa + xa; xd = max ba xa

in dRETURN (xb, xc, xd)))
(V , 0 , 0) �=

(λ(a, b). case b of (aa, ba) ⇒ dRETURN (aa, ba))))

theorem sum-max ′′-code-refine: RETURN (sum-max ′′-code V) ≤ sum-max ′-impl
V

using sum-max ′′-code-aux [folded sum-max ′′-code-def] .

theorem sum-max ′′-code-correct :
[[ls-α V 6= {}]] =⇒ sum-max ′′-code V = (

∑
(ls-α V), Max (ls-α V))

using order-trans[OF sum-max ′′-code-refine sum-max ′-impl-correct ,
of V ls-α V]

by auto

Now, we can generate verified code with the Isabelle/HOL code generator:

export-code sum-max-code sum-max ′-code sum-max ′′-code in SML file −
export-code sum-max-code sum-max ′-code sum-max ′′-code in OCaml file −
export-code sum-max-code sum-max ′-code sum-max ′′-code in Haskell file −
export-code sum-max-code sum-max ′-code sum-max ′′-code in Scala file −

2.5 Foreach-Loops

In the sum-max example above, we used a while-loop to iterate over the
elements of a set. As this pattern is used commonly, there is an abbreviation
for it in the refinement framework. The construct FOREACH S f σ0 iterates
f :: ′x⇒ ′s⇒ ′s for each element in S :: ′x set, starting with state σ0::

′s.

With foreach-loops, we could have written our example as follows:

definition sum-max-it :: nat set ⇒ (nat×nat) nres where
sum-max-it V ≡ FOREACH V (λx (s,m). RETURN (s+x ,max m x)) (0 ,0)

theorem sum-max-it-correct :
assumes PRE : V 6={} and FIN : finite V
shows sum-max-it V ≤ SPEC (λ(s,m). s=

∑
V ∧ m=Max V)

using PRE unfolding sum-max-it-def
apply (intro FOREACH-rule[where I =λit σ. sum-max-invar V (it ,σ)] refine-vcg)

11

apply (rule FIN) — Discharge finiteness of iterated set
apply (auto intro: sum-max-invar-step) — Discharge step
unfolding sum-max-invar-def — Unfold invariant definition
apply (auto) — Discharge remaining goals
done

definition sum-max-it-impl :: nat ls ⇒ (nat×nat) nres where
sum-max-it-impl V ≡ FOREACH (ls-α V) (λx (s,m). RETURN (s+x ,max m

x)) (0 ,0)

Note: The nondeterminism for iterators is currently resolved at code-generation
phase, where they are replaced by iterators from the ICF.

lemma sum-max-it-impl-refine:
notes [refine] = inj-on-id
assumes (V ,V ′)∈build-rel ls-α ls-invar
shows sum-max-it-impl V ≤ ⇓Id (sum-max-it V ′)
unfolding sum-max-it-impl-def sum-max-it-def

Note that we specified inj-on-id as additional introduction rule. This is due to
the very general iterator refinement rule, that may also change the set over that is
iterated.

using assms
apply refine-rcg — This time, we don’t need the refine-dref-type heuristics, as no

schematic refinement relations are generated.
apply (auto simp: refine-hsimp)
done

schematic-lemma sum-max-it-code-aux :
nres-of ?sum-max-it-code ≤ sum-max-it-impl V
unfolding sum-max-it-impl-def
apply refine-transfer
done

Note that the code generator has replaced the iterator by an iterator from
the Isabelle Collection Framework.

thm sum-max-it-code-aux [no-vars]
definition sum-max-it-code :: nat ls ⇒ (nat×nat) dres where

sum-max-it-code V ≡
(IT-tag ls-iteratei V (dres-case True True (λ-. True))

(λx s. s �= (λ(a, b). dRETURN (a + x , max b x))) (dRETURN (0 , 0)))

theorem sum-max-it-code-refine:
nres-of (sum-max-it-code V) ≤ sum-max-it-impl V
using sum-max-it-code-aux [folded sum-max-it-code-def] .

theorem sum-max-it-code-correct :
assumes ls-α V 6= {}
shows

12

sum-max-it-code V = dRETURN (s,m) =⇒ s=
∑

(ls-α V) ∧ m=Max (ls-α V)
(is ?P1 =⇒ ?G1)
and sum-max-it-code V 6= dFAIL (is ?G2)

proof −
note sum-max-it-code-refine[of V]
also note sum-max-it-impl-refine[of V ls-α V]
also note sum-max-it-correct
finally show ?P1 =⇒ ?G1 ?G2 using assms by auto

qed

export-code sum-max-it-code in SML file −
export-code sum-max-it-code in OCaml file −
export-code sum-max-it-code in Haskell file −
export-code sum-max-it-code in Scala file −

3 Pointwise Reasoning

In this section, we describe how to use pointwise reasoning to prove refine-
ment statements and other relations between element of the nondeterminism
monad.

Pointwise reasoning is often a powerful tool to show refinement between
structurally different program fragments.

The refinement framework defines the predicates nofail and inres. nofail S
states that S does not fail, and inres S x states that one possible result of
S is x (Note that this includes the case that S fails).

Equality and refinement can be stated using nofail and inres:

(?S = ?S ′) = (nofail ?S = nofail ?S ′ ∧ (∀ x . inres ?S x = inres ?S ′ x))

(?S ≤ ?S ′) = (nofail ?S ′ −→ nofail ?S ∧ (∀ x . inres ?S x −→ inres ?S ′ x))

Useful corollaries of this lemma are pw-leI, pw-eqI, and pwD.

Once a refinement has been expressed via nofail/inres, the simplifier can be
used to propagate the nofail and inres predicates inwards over the structure
of the program. The relevant lemmas are contained in the named theorem
collection refine-pw-simps.

As an example, we show refinement of two structurally different programs
here, both returning some value in a certain range:

lemma do { ASSERT (fst p > 2); SPEC (λx . x≤(2 ::nat)∗(fst p + snd p)) }
≤ do { let (x ,y)=p; z←SPEC (λz . z≤x+y);

a←SPEC (λa. a≤x+y); ASSERT (x>2); RETURN (a+z)}
apply (rule pw-leI)
apply (auto simp add : refine-pw-simps split : prod .split)

apply (rename-tac a b x)

13

apply (case-tac x≤a+b)
apply (rule-tac x=0 in exI)
apply simp
apply (rule-tac x=a+b in exI)
apply (simp)
apply (rule-tac x=x−(a+b) in exI)
apply simp
done

4 Arbitrary Recursion (TBD)

Explain REC and REC T .

See examples/Recursion.

To Be Done

5 Reference

5.1 Statements

SUCCEED The empty set of results. Least element of the refinement or-
dering.

FAIL Result that indicates a failing assertion. Greatest element of the re-
finement ordering.

RES X All results from set X.

RETURN x Return single result x. Defined in terms of RES : RETURN x
= RETURN x.

EMBED r Embed partial-correctness option type, i.e., succeed if r=None,
otherwise return value of r.

SPEC Φ Specification. All results that satisfy predicate Φ. Defined in
terms of RES : SPEC Φ = SPEC Φ

bind M f Binding. Nondeterministically choose a result from M and apply
f to it. Note that usually the do-notation is used, i.e., do {x←M ; f
x} or do {M ;f } if the result of M is not important. If M fails, bind
M f also fails.

ASSERT Φ Assertion. Fails if Φ does not hold, otherwise returns (). Note
that the default usage with the do-notation is: do {ASSERT Φ; f }.

ASSUME Φ Assumption. Succeeds if Φ does not hold, otherwise returns
(). Note that the default usage with the do-notation is: do {ASSUME
Φ; f }.

14

REC body Recursion for partial correctness. May be used to express arbi-
trary recursion. Returns SUCCEED on nontermination.

REC T body Recursion for total correctness. Returns FAIL on nontermina-
tion.

WHILE b f σ0 Partial correct while-loop. Start with state σ0, and repeat-
edly apply f as long as b holds for the current state. Non-terminating
paths are ignored, i.e., they do not contribute a result.

WHILET b f σ0 Total correct while-loop. If there is a non-terminating
path, the result is FAIL.

WHILE I b f σ0, WHILET
I b f σ0 While-loop with annotated invariant. It

is asserted that the invariant holds.

FOREACH S f σ0 Foreach loop. Start with state σ0, and transform the
state with f x for each element x∈S. Asserts that S is finite.

FOREACH I S f σ0 Foreach-loop with annotated invariant.

Alternative syntax: FOREACH I S f σ0.

The invariant is a predicate of type I :: ′a set ⇒ ′b ⇒ bool, where I it
σ means, that the invariant holds for the remaining set of elements it
and current state σ.

FOREACH C S c f σ0 Foreach-loop with explicit continuation condition.

Alternative syntax: FOREACH C S c f σ0.

If c:: ′σ⇒bool becomes false for the current state, the iteration imme-
diately terminates.

FOREACH C
I S c f σ0 Foreach-loop with explicit continuation condition

and annotated invariant.

Alternative syntax: FOREACH C
I S c f σ0.

partial-function (nrec) Mode of the partial function package for the nonde-
terminism monad.

5.2 Refinement

op ≤:: ′a nres ⇒ ′a nres ⇒ bool Refinement ordering. S ≤ S ′ means, that
every result in S is also a result in S ′. Moreover, S may only fail if S ′

fails. ≤ forms a complete lattice, with least element SUCCEED and
greatest element FAIL.

15

⇓ R Concretization. Takes a refinement relation R::(′c× ′a) set that relates
concrete to abstract values, and returns a concretization function ⇓ R.

⇑ R Abstraction. Takes a refinement relation and returns an abstraction
function. The functions ⇓R and ⇑R form a Galois-connection, i.e., we
have: S ≤ ⇓R S ′←→ ⇑R S ≤ S ′.

br α I Builds a refinement relation from an abstraction function and an
invariant. Those refinement relations are always single-valued.

nofail S Predicate that states that S does not fail.

inres S x Predicate that states that S includes result x. Note that a failing
program includes all results.

5.3 Proof Tools

Verification Condition Generator:

Method: intro refine-vcg

Attributes: refine-vcg

Transforms a subgoal of the form S ≤ SPEC Φ into verification condi-
tions by decomposing the structure of S. Invariants for loops without
annotation must be specified explicitely by instantiating the respective
proof-rule for the loop construct, e.g., intro WHILE-rule[where I =. . .]
refine-vcg.

refine-vcg is a named theorems collection that contains the rules that
are used by default.

Refinement Condition Generator:

Method: refine-rcg [thms].

Attributes: refine0, refine, refine2.

Flags: refine-no-prod-split.

Tries to prove a subgoal of the form S ≤ ⇓R S ′ by decomposing the
structure of S and S ′. The rules to be used are contained in the
theorem collection refine. More rules may be passed as argument to
the method. Rules contained in refine0 are always tried first, and rules
in refine2 are tried last. Usually, rules that decompose both programs
equally should be put into refine. Rules that may make big steps,
without decomposing the program further, should be put into refine0
(e.g., Id-refine). Rules that decompose the programs differently and

16

shall be used as last resort before giving up should be put into refine2,
e.g., remove-Let-refine.

By default, this procedure will invoke the splitter to split product
types in the goals. This behaviour can be disabled by setting the flag
refine-no-prod-split.

Refinement Relation Heuristics:

Method: refine-dref-type [(trace)].

Attributes: refine-dref-RELATES, refine-dref-pattern.

Flags: refine-dref-tracing.

Tries to instantiate schematic refinement relations based on their type.
By default, this rule is applied to all subgoals. Internally, it uses
the rules declared as refine-dref-pattern to introduce a goal of the
form RELATES ?R, that is then solved by exhaustively applying rules
declared as refine-dref-RELATES.

The flag refine-dref-tracing controls tracing of resolving RELATES -
goals. Tracing may also be enabled by passing (trace) as argument.

Pointwise Reasoning Simplification Rules:

Attributes: refine-pw-simps

A theorem collection that contains simplification lemmas to push in-
wards nofail and inres predicates into program constructs.

Refinement Simp Rules:

Attributes: refine-hsimp

A theorem collection that contains some simplification lemmas that
are useful to prove membership in refinement relations.

Transfer:

Method: refine-transfer [thms]

Attribute: refine-transfer

Tries to prove a subgoal of the form α f ≤ S by decomposing the struc-
ture of f and S. This is usually used in connection with a schematic
lemma, to generate f from the structure of S.

The theorems declared as refine-transfer are used to do the transfer.
More theorems may be passed as arguments to the method. Moreover,
some simplification for nested abstraction over product types (λ(a,b)

17

(c,d). . . .) is done, and the monotonicity prover is used on monotonic-
ity goals.

There is a standard setup for α=RETURN (transfer to plain function
for total correct code generation), and α=nres-of (transfer to deter-
ministic result monad, for partial correct code generation).

Automatic Refinement:

Method: refine-autoref [(trace)] [(ss)] [thms]

Attributes: ...

Prototype method for automatic data refinement. Works well for sim-
ple examples. See ex/Automatic-Refinement for examples and prelim-
inary documentation.

5.4 Packages

The following parts of the refinement framework are not included by default,
but can be imported if necessary:

Collection-Bindings: Sets up refinement rules for the Isabelle Collection
Framework. With this theory loaded, the refinement condition gener-
ator will discharge most data refinements using the ICF automatically.
Moreover, the transfer procedure will replace FOREACH -statements
by the corresponding ICF-iterators.

Autoref-Collection-Bindings: Automatic refinement for ICF data structures.
Almost complete for sets, unique priority queues. Partial setup for
maps.

end

References

[1] P. Lammich. Collections framework. In G. Klein, T. Nipkow, and
L. Paulson, editors, Archive of Formal Proofs. http://afp.sf.net/entries/
collections.shtml, Dec. 2009. Formal proof development.

[2] P. Lammich and A. Lochbihler. The Isabelle collections framework.
In M. Kaufmann and L. Paulson, editors, Interactive Theorem Prov-
ing, volume 6172 of Lecture Notes in Computer Science, pages 339–354.
Springer, 2010.

18

http://afp.sf.net/entries/collections.shtml
http://afp.sf.net/entries/collections.shtml

	Introduction
	Guided Tour
	Defining Programs
	Proving Programs Correct
	Refinement
	Code Generation
	Foreach-Loops

	Pointwise Reasoning
	Arbitrary Recursion (TBD)
	Reference
	Statements
	Refinement
	Proof Tools
	Packages

