
An Isabelle/HOL Formalization of the
Textbook Proof of Huffman’s Algorithm∗

Jasmin Christian Blanchette
Institut für Informatik, Technische Universität München, Germany

blanchette@in.tum.de

May 24, 2012

Abstract

Huffman’s algorithm is a procedure for constructing a binary tree
with minimum weighted path length. This report presents a for-
mal proof of the correctness of Huffman’s algorithm written using Is-
abelle/HOL. Our proof closely follows the sketches found in standard
algorithms textbooks, uncovering a few snags in the process. Another
distinguishing feature of our formalization is the use of custom induc-
tion rules to help Isabelle’s automatic tactics, leading to very short
proofs for most of the lemmas.

Contents

1 Introduction 2
1.1 Binary Codes . 2
1.2 Binary Trees . 3
1.3 Huffman’s Algorithm . 5
1.4 The Textbook Proof . 6
1.5 Overview of the Formalization . 7
1.6 Overview of Isabelle’s HOL Logic 8
1.7 Head of the Theory File . 8

2 Definition of Prefix Code Trees and Forests 9
2.1 Tree Datatype . 9
2.2 Forest Datatype . 9
2.3 Alphabet . 9

∗This work was supported by the DFG grant NI 491/11-1.

1

blanchette@in.tum.de

2.4 Consistency . 10
2.5 Symbol Depths . 11
2.6 Height . 12
2.7 Symbol Frequencies . 13
2.8 Weight . 14
2.9 Cost . 14
2.10 Optimality . 16

3 Functional Implementation of Huffman’s Algorithm 16
3.1 Cached Weight . 16
3.2 Tree Union . 16
3.3 Ordered Tree Insertion . 17
3.4 The Main Algorithm . 18

4 Definition of Auxiliary Functions Used in the Proof 19
4.1 Sibling of a Symbol . 19
4.2 Leaf Interchange . 22
4.3 Symbol Interchange . 24
4.4 Four-Way Symbol Interchange . 26
4.5 Sibling Merge . 27
4.6 Leaf Split . 29
4.7 Weight Sort Order . 30
4.8 Pair of Minimal Symbols . 31

5 Formalization of the Textbook Proof 31
5.1 Four-Way Symbol Interchange Cost Lemma 31
5.2 Leaf Split Optimality Lemma . 32
5.3 Leaf Split Commutativity Lemma 34
5.4 Optimality Theorem . 36

6 Related Work 37

7 Conclusion 38

1 Introduction

1.1 Binary Codes

Suppose we want to encode strings over a finite source alphabet to sequences of
bits. The approach used by ASCII and most other charsets is to map each source
symbol to a distinct k-bit code word, where k is fixed and is typically 8 or 16. To
encode a string of symbols, we simply encode each symbol in turn. Decoding
involves mapping each k-bit block back to the symbol it represents.

2

Fixed-length codes are simple and fast, but they generally waste space. If
we know the frequency wa of each source symbol a, we can save space by using
shorter code words for the most frequent symbols. We say that a (variable-length)
code is optimum if it minimizes the sum ∑a wa δa, where δa is the length of the
binary code word for a. Information theory tells us that a code is optimum if for
each source symbol c the code word representing c has length

δc = log2
1
pc

, where pc =
wc

∑a wa
.

This number is generally not an integer, so we cannot use it directly. Nonetheless,
the above criterion is a useful yardstick and paves the way for arithmetic coding
[13], a generalization of the method presented here.

As an example, consider the source string ‘abacabad’. We have

pa = 1
2 , pb = 1

4 , pc =
1
8 , pd = 1

8 .

The optimum lengths for the binary code words are all integers, namely

δa = 1, δb = 2, δc = 3, δd = 3,

and they are realized by the code

C1 = {a 7→ 0, b 7→ 10, c 7→ 110, d 7→ 111}.

Encoding ‘abacabad’ produces the 14-bit code word 01001100100111. The code C1
is optimum: No code that unambiguously encodes source symbols one at a time
could do better than C1 on the input ‘abacabad’. In particular, with a fixed-length
code such as

C2 = {a 7→ 00, b 7→ 01, c 7→ 10, d 7→ 11}

we need at least 16 bits to encode ‘abacabad’.

1.2 Binary Trees

Inside a program, binary codes can be represented by binary trees. For example,
the trees

and

3

correspond to C1 and C2. The code word for a given symbol can be obtained
as follows: Start at the root and descend toward the leaf node associated with
the symbol one node at a time; generate a 0 whenever the left child of the cur-
rent node is chosen and a 1 whenever the right child is chosen. The generated
sequence of 0s and 1s is the code word.

To avoid ambiguities, we require that only leaf nodes are labeled with sym-
bols. This ensures that no code word is a prefix of another, thereby eliminating
the source of all ambiguities.1 Codes that have this property are called prefix
codes. As an example of a code that doesn’t have this property, consider the code
associated with the tree

and observe that ‘bbb’, ‘bd’, and ‘db’ all map to the code word 111.
Each node in a code tree is assigned a weight. For a leaf node, the weight is

the frequency of its symbol; for an inner node, it is the sum of the weights of its
subtrees. Code trees can be annotated with their weights:

For our purposes, it is sufficient to consider only full binary trees (trees whose
inner nodes all have two children). This is because any inner node with only one

1Strictly speaking, there is another potential source of ambiguity. If the alphabet consists of a
single symbol a, that symbol could be mapped to the empty code word, and then any string aa . . . a
would map to the empty bit sequence, giving the decoder no way to recover the original string’s
length. This scenario can be ruled out by requiring that the alphabet has cardinality 2 or more.

4

child can advantageously be eliminated; for example,

becomes

1.3 Huffman’s Algorithm

David Huffman [7] discovered a simple algorithm for constructing an optimum
code tree for specified symbol frequencies: Create a forest consisting of only leaf
nodes, one for each symbol in the alphabet, taking the given symbol frequencies
as initial weights for the nodes. Then pick the two trees

and

with the lowest weights and replace them with the tree

Repeat this process until only one tree is left.
As an illustration, executing the algorithm for the frequencies

fd = 3, fe = 11, ff = 5, fs = 7, fz = 2

gives rise to the following sequence of states:

(1) (2)

5

(3) (4) (5)

Tree (5) is an optimum tree for the given frequencies.

1.4 The Textbook Proof

Why does the algorithm work? In his article, Huffman gave some motivation but
no real proof. For a proof sketch, we turn to Donald Knuth [8, p. 403–404]:

It is not hard to prove that this method does in fact minimize the
weighted path length [i.e., ∑a wa δa], by induction on m. Suppose we
have w1 ≤ w2 ≤ w3 ≤ · · · ≤ wm, where m ≥ 2, and suppose that we
are given a tree that minimizes the weighted path length. (Such a tree
certainly exists, since only finitely many binary trees with m terminal
nodes are possible.) Let V be an internal node of maximum distance
from the root. If w1 and w2 are not the weights already attached to the
children of V, we can interchange them with the values that are al-
ready there; such an interchange does not increase the weighted path
length. Thus there is a tree that minimizes the weighted path length
and contains the subtree

Now it is easy to prove that the weighted path length of such a tree is
minimized if and only if the tree with

replaced by

has minimum path length for the weights w1 + w2, w3, . . . , wm.

6

There is, however, a small oddity in this proof: It is not clear why we must assert
the existence of an optimum tree that contains the subtree

Indeed, the formalization works without it.
Cormen et al. [4, p. 385–391] provide a very similar proof, articulated around

the following propositions:

Lemma 16.2
Let C be an alphabet in which each character c ∈ C has frequency
f [c]. Let x and y be two characters in C having the lowest frequencies.
Then there exists an optimal prefix code for C in which the codewords
for x and y have the same length and differ only in the last bit.

Lemma 16.3
Let C be a given alphabet with frequency f [c] defined for each charac-
ter c ∈ C. Let x and y be two characters in C with minimum frequency.
Let C′ be the alphabet C with characters x, y removed and (new) char-
acter z added, so that C′ = C− {x, y} ∪ {z}; define f for C′ as for C,
except that f [z] = f [x] + f [y]. Let T′ be any tree representing an opti-
mal prefix code for the alphabet C′. Then the tree T, obtained from T′

by replacing the leaf node for z with an internal node having x and y
as children, represents an optimal prefix code for the alphabet C.

Theorem 16.4
Procedure HUFFMAN produces an optimal prefix code.

1.5 Overview of the Formalization

This report presents a formalization of the proof of Huffman’s algorithm writ-
ten using Isabelle/HOL [12]. Our proof is based on the informal proofs given
by Knuth and Cormen et al. The development was done independently of Lau-
rent Théry’s Coq proof [14, 15], which through its “cover” concept represents a
considerable departure from the textbook proof.

The development consists of 90 lemmas and 5 theorems. Most of them have
very short proofs thanks to the extensive use of simplification rules and custom
induction rules. The remaining proofs are written using the structured proof
format Isar [16] and are accompanied by informal arguments and diagrams.

The report is organized as follows. Section 2 defines the datatypes for binary
code trees and forests and develops a small library of related functions. (Inci-
dentally, there is nothing special about binary codes and binary trees. Huffman’s

7

algorithm and its proof can be generalized to n-ary trees [8, p. 405 and 595].) Sec-
tion 3 presents a functional implementation of the algorithm. Section 4 defines
several tree manipulation functions needed for the proof. Section 5 presents three
key lemmas and concludes with the optimality theorem. Section 6 compares our
work with Théry’s Coq proof. Finally, Section 7 concludes the report.

1.6 Overview of Isabelle’s HOL Logic

This section presents a brief overview of the Isabelle/HOL logic, so that readers
not familiar with the system can at least understand the lemmas and theorems,
if not the proofs. Readers who already know Isabelle are encouraged to skip this
section.

Isabelle is a generic theorem prover whose built-in metalogic is an intuitionis-
tic fragment of higher-order logic [5, 12]. The metalogical operators are material
implication, written [[ϕ1; . . . ; ϕn]] =⇒ ψ (“if ϕ1 and . . . and ϕn, then ψ”), uni-
versal quantification, written

∧
x1 . . . xn. ψ (“for all x1, . . . , xn we have ψ”), and

equality, written t ≡ u.
The incarnation of Isabelle that we use in this development, Isabelle/HOL,

provides a more elaborate version of higher-order logic, complete with the famil-
iar connectives and quantifiers (¬, ∧ , ∨ , −→ , ∀ , and ∃) on terms of type bool. In
addition, = expresses equivalence. The formulas

∧
x1 . . . xm. [[ϕ1; . . . ; ϕn]] =⇒ ψ

and ∀x1. . . . ∀xm. ϕ1 ∧ · · · ∧ ϕn −→ ψ are logically equivalent, but they interact
differently with Isabelle’s proof tactics.

The term language consists of simply typed λ-terms written in an ML-like
syntax [11]. Function application expects no parentheses around the argument
list and no commas between the arguments, as in f x y. Syntactic sugar provides
an infix syntax for common operators, such as x = y and x+ y. Types are inferred
automatically in most cases, but they can always be supplied using an annotation
t::τ, where t is a term and τ is its type. The type of total functions from ′a to ′b is
written ′a⇒ ′b. Variables may range over functions.

The type of natural numbers is called nat. The type of lists over type ′a, written
′a list, features the empty list [], the infix constructor x · xs (where x is an element
of type ′a and xs is a list over ′a), and the conversion function set from lists to
sets. The type of sets over ′a is written ′a set. Operations on sets are written using
traditional mathematical notation.

1.7 Head of the Theory File

The Isabelle theory starts in the standard way.

theory Huffman
imports Main
begin

We attach the simp attribute to some predefined lemmas to add them to the de-

8

fault set of simplification rules.

declare Int_Un_distrib [simp]
Int_Un_distrib2 [simp]
min_max.sup_absorb1 [simp]
min_max.sup_absorb2 [simp]

2 Definition of Prefix Code Trees and Forests

2.1 Tree Datatype

A prefix code tree is a full binary tree in which leaf nodes are of the form Leaf w a,
where a is a symbol and w is the frequency associated with a, and inner nodes are
of the form InnerNode w t1 t2, where t1 and t2 are the left and right subtrees and w
caches the sum of the weights of t1 and t2. Prefix code trees are polymorphic on
the symbol datatype ′a.

datatype ′a tree =
Leaf nat ′a
InnerNode nat (′a tree) (′a tree)

2.2 Forest Datatype

The intermediate steps of Huffman’s algorithm involve a list of prefix code trees,
or prefix code forest.

type_synonym ′a forest = ′a tree list

2.3 Alphabet

The alphabet of a code tree is the set of symbols appearing in the tree’s leaf nodes.

primrec alphabet :: ′a tree⇒ ′a set where
alphabet (Leaf w a) = {a}
alphabet (InnerNode w t1 t2) = alphabet t1 ∪ alphabet t2

For sets and predicates, Isabelle gives us the choice between inductive definitions
(inductive_set and inductive) and recursive functions (primrec, fun, and func-
tion). In this development, we consistently favor recursion over induction, for
two reasons:

• Recursion gives rise to simplification rules that greatly help automatic proof
tactics. In contrast, reasoning about inductively defined sets and predicates
involves introduction and elimination rules, which are more clumsy than
simplification rules.

9

• Isabelle’s counterexample generator quickcheck [2], which we used exten-
sively during the top-down development of the proof (together with sorry),
has better support for recursive definitions.

The alphabet of a forest is defined as the union of the alphabets of the trees
that compose it. Although Isabelle supports overloading for non-overlapping
types, we avoid many type inference problems by attaching an ‘F’ subscript to
the forest generalizations of functions defined on trees.

primrec alphabetF :: ′a forest⇒ ′a set where
alphabetF [] = {}
alphabetF (t · ts) = alphabet t ∪ alphabetF ts

Alphabets are central to our proofs, and we need the following basic facts about
them.

lemma finite_alphabet [simp]:
finite (alphabet t)
〈proof 〉

lemma exists_in_alphabet:
∃a. a ∈ alphabet t
〈proof 〉

2.4 Consistency

A tree is consistent if for each inner node the alphabets of the two subtrees are
disjoint. Intuitively, this means that every symbol in the alphabet occurs in ex-
actly one leaf node. Consistency is a sufficient condition for δa (the length of the
unique code word for a) to be defined. Although this wellformedness property
isn’t mentioned in algorithms textbooks [1, 4, 8], it is essential and appears as an
assumption in many of our lemmas.

primrec consistent :: ′a tree⇒ bool where
consistent (Leaf w a) = True
consistent (InnerNode w t1 t2) =

(consistent t1 ∧ consistent t2 ∧ alphabet t1 ∩ alphabet t2 = {})

primrec consistentF :: ′a forest⇒ bool where
consistentF [] = True
consistentF (t · ts) =

(consistent t ∧ consistentF ts ∧ alphabet t ∩ alphabetF ts = {})

Several of our proofs are by structural induction on consistent trees t and involve
one symbol a. These proofs typically distinguish the following cases.

BASE CASE: t = Leaf w b.

10

INDUCTION STEP: t = InnerNode w t1 t2.

SUBCASE 1: a belongs to t1 but not to t2.

SUBCASE 2: a belongs to t2 but not to t1.

SUBCASE 3: a belongs to neither t1 nor t2.

Thanks to the consistency assumption, we can rule out the subcase where a be-
longs to both subtrees.

Instead of performing the above case distinction manually, we encode it in a
custom induction rule. This saves us from writing repetitive proof scripts and
helps Isabelle’s automatic proof tactics.

lemma tree_induct_consistent [consumes 1, case_names base step1 step2 step3]:
[[consistent t;∧

wb b a. P (Leaf wb b) a;∧
w t1 t2 a.
[[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = {};
a ∈ alphabet t1; a /∈ alphabet t2; P t1 a; P t2 a]] =⇒

P (InnerNode w t1 t2) a;∧
w t1 t2 a.
[[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = {};
a /∈ alphabet t1; a ∈ alphabet t2; P t1 a; P t2 a]] =⇒

P (InnerNode w t1 t2) a;∧
w t1 t2 a.
[[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = {};
a /∈ alphabet t1; a /∈ alphabet t2; P t1 a; P t2 a]] =⇒

P (InnerNode w t1 t2) a]] =⇒
P t a〈proof 〉

The induct_scheme tactic reduces the putative induction rule to simpler proof
obligations. Internally, it reuses the machinery that constructs the default in-
duction rules. The resulting proof obligations concern (a) case completeness,
(b) invariant preservation (in our case, tree consistency), and (c) wellfounded-
ness. For tree_induct_consistent, the obligations (a) and (b) can be discharged
using Isabelle’s simplifier and classical reasoner, whereas (c) requires a single
invocation of lexicographic_order, a tactic that was originally designed to prove
termination of recursive functions [3, 9, 10].

2.5 Symbol Depths

The depth of a symbol (which we denoted by δa in Section 1.1) is the length of
the path from the root to the leaf node labeled with that symbol, or equivalently
the length of the code word for the symbol. Symbols that don’t occur in the tree
or that occur at the root of a one-node tree have depth 0. If a symbol occurs

11

in several leaf nodes (which may happen with inconsistent trees), the depth is
arbitrarily defined in terms of the leftmost node labeled with that symbol.

primrec depth :: ′a tree⇒ ′a⇒ nat where
depth (Leaf w b) a = 0
depth (InnerNode w t1 t2) a =

(if a ∈ alphabet t1 then depth t1 a + 1
else if a ∈ alphabet t2 then depth t2 a + 1
else 0)

The definition may seem very inefficient from a functional programming point
of view, but it does not matter, because unlike Huffman’s algorithm, the depth
function is merely a reasoning tool and is never actually executed.

2.6 Height

The height of a tree is the length of the longest path from the root to a leaf node,
or equivalently the length of the longest code word. This is readily generalized
to forests by taking the maximum of the trees’ heights. Note that a tree has height
0 if and only if it is a leaf node, and that a forest has height 0 if and only if all its
trees are leaf nodes.

primrec height :: ′a tree⇒ nat where
height (Leaf w a) = 0
height (InnerNode w t1 t2) = max (height t1) (height t2) + 1

primrec heightF :: ′a forest⇒ nat where
heightF [] = 0
heightF (t · ts) = max (height t) (heightF ts)

The depth of any symbol in the tree is bounded by the tree’s height, and there
exists a symbol with a depth equal to the height.

lemma depth_le_height:
depth t a ≤ height t
〈proof 〉

lemma exists_at_height:
consistent t =⇒ ∃a ∈ alphabet t. depth t a = height t
〈proof 〉

The following elimination rules help Isabelle’s classical prover, notably the auto
tactic. They are easy consequences of the inequation depth t a ≤ height t.

lemma depth_max_heightE_left [elim!]:
[[depth t1 a = max (height t1) (height t2);
[[depth t1 a = height t1; height t1 ≥ height t2]] =⇒ P]] =⇒

12

P
〈proof 〉

lemma depth_max_heightE_right [elim!]:
[[depth t2 a = max (height t1) (height t2);
[[depth t2 a = height t2; height t2 ≥ height t1]] =⇒ P]] =⇒

P
〈proof 〉

We also need the following lemma.

lemma height_gt_0_alphabet_eq_imp_height_gt_0:
assumes height t > 0 consistent t alphabet t = alphabet u
shows height u > 0
〈proof 〉

2.7 Symbol Frequencies

The frequency of a symbol (which we denoted by wa in Section 1.1) is the sum
of the weights attached to the leaf nodes labeled with that symbol. If the tree is
consistent, the sum comprises at most one nonzero term. The frequency is then
the weight of the leaf node labeled with the symbol, or 0 if there is no such node.
The generalization to forests is straightforward.

primrec freq :: ′a tree⇒ ′a⇒ nat where
freq (Leaf w a) = (λb. if b = a then w else 0)
freq (InnerNode w t1 t2) = (λb. freq t1 b + freq t2 b)

primrec freqF :: ′a forest⇒ ′a⇒ nat where
freqF [] = (λb. 0)
freqF (t · ts) = (λb. freq t b + freqF ts b)

Alphabet and symbol frequencies are intimately related. Simplification rules en-
sure that sums of the form freq t1 a + freq t2 a collapse to a single term when we
know which tree a belongs to.

lemma notin_alphabet_imp_freq_0 [simp]:
a /∈ alphabet t =⇒ freq t a = 0
〈proof 〉

lemma notin_alphabetF_imp_freqF_0 [simp]:
a /∈ alphabetF ts =⇒ freqF ts a = 0
〈proof 〉

lemma freq_0_right [simp]:
[[alphabet t1 ∩ alphabet t2 = {}; a ∈ alphabet t1]] =⇒ freq t2 a = 0
〈proof 〉

13

lemma freq_0_left [simp]:
[[alphabet t1 ∩ alphabet t2 = {}; a ∈ alphabet t2]] =⇒ freq t1 a = 0
〈proof 〉

Two trees are comparable if they have the same alphabet and symbol frequencies.
This is an important concept, because it allows us to state not only that the tree
constructed by Huffman’s algorithm is optimal but also that it has the expected
alphabet and frequencies.

We close this section with a more technical lemma.

lemma heightF_0_imp_Leaf_freqF_in_set:
[[consistentF ts; heightF ts = 0; a ∈ alphabetF ts]] =⇒
Leaf (freqF ts a) a ∈ set ts
〈proof 〉

2.8 Weight

The weight function returns the weight of a tree. In the InnerNode case, we ignore
the weight cached in the node and instead compute the tree’s weight recursively.
This makes reasoning simpler because we can then avoid specifying cache cor-
rectness as an assumption in our lemmas.

primrec weight :: ′a tree⇒ nat where
weight (Leaf w a) = w
weight (InnerNode w t1 t2) = weight t1 + weight t2

The weight of a tree is the sum of the frequencies of its symbols.

lemma weight_eq_Sum_freq:

consistent t =⇒ weight t = ∑
a∈alphabet t

freq t a

〈proof 〉
The assumption consistent t is not necessary, but it simplifies the proof by letting
us invoke the lemma setsum_Un_disjoint:

[[finite A; finite B; A ∩ B = {}]] =⇒ ∑
x∈A

g x + ∑
x∈B

g x = ∑
x∈A∪B

g x.

2.9 Cost

The cost of a consistent tree, sometimes called the weighted path length, is given
by the sum ∑a∈alphabet t freq t a× depth t a (which we denoted by ∑a wa δa in Sec-
tion 1.1). It obeys a simple recursive law.

primrec cost :: ′a tree⇒ nat where
cost (Leaf w a) = 0

14

cost (InnerNode w t1 t2) = weight t1 + cost t1 + weight t2 + cost t2

One interpretation of this recursive law is that the cost of a tree is the sum of the
weights of its inner nodes [8, p. 405]. (Recall that weight (InnerNode w t1 t2) =
weight t1 + weight t2.) Since the cost of a tree is such a fundamental concept, it
seems necessary to prove that the above function definition is correct.

theorem cost_eq_Sum_freq_mult_depth:

consistent t =⇒ cost t = ∑
a∈alphabet t

freq t a × depth t a

The proof is by structural induction on t. If t = Leaf w b, both sides of the equation
simplify to 0. This leaves the case t = InnerNode w t1 t2. Let A, A1, and A2 stand
for alphabet t, alphabet t1, and alphabet t2, respectively. We have

cost t
= (definition of cost)

weight t1 + cost t1 + weight t2 + cost t2
= (induction hypothesis)

weight t1 + ∑a∈A1
freq t1 a × depth t1 a +

weight t2 + ∑a∈A2
freq t2 a × depth t2 a

= (definition of depth, consistency)
weight t1 + ∑a∈A1

freq t1 a × (depth t a − 1) +
weight t2 + ∑a∈A2

freq t2 a × (depth t a − 1)
= (distributivity of × and ∑ over −)

weight t1 + ∑a∈A1
freq t1 a × depth t a − ∑a∈A1

freq t1 a +
weight t2 + ∑a∈A2

freq t2 a × depth t a − ∑a∈A2
freq t2 a

= (weight_eq_Sum_freq)

∑a∈A1
freq t1 a × depth t a + ∑a∈A2

freq t2 a × depth t a
= (definition of freq, consistency)

∑a∈A1
freq t a × depth t a + ∑a∈A2

freq t a × depth t a
= (setsum_Un_disjoint, consistency)

∑a∈A1∪A2
freq t a × depth t a

= (definition of alphabet)
∑a∈A freq t a × depth t a.

The structured proof closely follows this argument.

〈proof 〉
Finally, it should come as no surprise that trees with height 0 have cost 0.

lemma height_0_imp_cost_0 [simp]:
height t = 0 =⇒ cost t = 0
〈proof 〉

15

2.10 Optimality

A tree is optimum if and only if its cost is not greater than that of any comparable
tree. We can ignore inconsistent trees without loss of generality.

definition optimum :: ′a tree⇒ bool where
optimum t ≡

∀u. consistent u −→ alphabet t = alphabet u −→ freq t = freq u −→
cost t ≤ cost u

3 Functional Implementation of Huffman’s Algorithm

3.1 Cached Weight

The cached weight of a node is the weight stored directly in the node. Our ar-
guments rely on the computed weight (embodied by the weight function) rather
than the cached weight, but the implementation of Huffman’s algorithm uses the
cached weight for performance reasons.

primrec cachedWeight :: ′a tree⇒ nat where
cachedWeight (Leaf w a) = w
cachedWeight (InnerNode w t1 t2) = w

The cached weight of a leaf node is identical to its computed weight.

lemma height_0_imp_cachedWeight_eq_weight [simp]:
height t = 0 =⇒ cachedWeight t = weight t
〈proof 〉

3.2 Tree Union

The implementation of Huffman’s algorithm builds on two additional auxiliary
functions. The first one, uniteTrees, takes two trees

and

and returns the tree

16

definition uniteTrees :: ′a tree⇒ ′a tree⇒ ′a tree where
uniteTrees t1 t2 ≡ InnerNode (cachedWeight t1 + cachedWeight t2) t1 t2

The alphabet, consistency, and symbol frequencies of a united tree are easy to
connect to the homologous properties of the subtrees.

lemma alphabet_uniteTrees [simp]:
alphabet (uniteTrees t1 t2) = alphabet t1 ∪ alphabet t2
〈proof 〉

lemma consistent_uniteTrees [simp]:
[[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = {}]] =⇒
consistent (uniteTrees t1 t2)
〈proof 〉

lemma freq_uniteTrees [simp]:
freq (uniteTrees t1 t2) = (λa. freq t1 a + freq t2 a)
〈proof 〉

3.3 Ordered Tree Insertion

The auxiliary function insortTree inserts a tree into a forest sorted by cached weight,
preserving the sort order.

primrec insortTree :: ′a tree⇒ ′a forest⇒ ′a forest where
insortTree u [] = [u]
insortTree u (t · ts) =

(if cachedWeight u ≤ cachedWeight t then u · t · ts
else t · insortTree u ts)

The resulting forest contains one more tree than the original forest. Clearly, it
cannot be empty.

lemma length_insortTree [simp]:
length (insortTree t ts) = length ts + 1
〈proof 〉

lemma insortTree_ne_Nil [simp]:
insortTree t ts 6= []
〈proof 〉

The alphabet, consistency, symbol frequencies, and height of a forest after inser-
tion are easy to relate to the homologous properties of the original forest and the
inserted tree.

lemma alphabetF_insortTree [simp]:
alphabetF (insortTree t ts) = alphabet t ∪ alphabetF ts

17

〈proof 〉

lemma consistentF_insortTree [simp]:
consistentF (insortTree t ts) = consistentF (t · ts)
〈proof 〉

lemma freqF_insortTree [simp]:
freqF (insortTree t ts) = (λa. freq t a + freqF ts a)
〈proof 〉

lemma heightF_insortTree [simp]:
heightF (insortTree t ts) = max (height t) (heightF ts)
〈proof 〉

3.4 The Main Algorithm

Huffman’s algorithm repeatedly unites the first two trees of the forest it receives
as argument until a single tree is left. It should initially be invoked with a list of
leaf nodes sorted by weight. Note that it is not defined for the empty list.

fun huffman :: ′a forest⇒ ′a tree where
huffman [t] = t
huffman (t1 · t2 · ts) = huffman (insortTree (uniteTrees t1 t2) ts)

The time complexity of the algorithm is quadratic in the size of the forest. If
we eliminated the inner node’s cached weight component, and instead recom-
puted the weight each time it is needed, the complexity would remain quadratic,
but with a larger constant. Using a binary search in insortTree, the correspond-
ing imperative algorithm is O(n log n) if we keep the weight cache and O(n2) if
we drop it. An O(n) imperative implementation is possible by maintaining two
queues, one containing the unprocessed leaf nodes and the other containing the
combined trees [8, p. 404].

The tree returned by the algorithm preserves the alphabet, consistency, and
symbol frequencies of the original forest.

theorem alphabet_huffman [simp]:
ts 6= [] =⇒ alphabet (huffman ts) = alphabetF ts
〈proof 〉

theorem consistent_huffman [simp]:
[[consistentF ts; ts 6= []]] =⇒ consistent (huffman ts)
〈proof 〉

theorem freq_huffman [simp]:
ts 6= [] =⇒ freq (huffman ts) = freqF ts
〈proof 〉

18

4 Definition of Auxiliary Functions Used in the Proof

4.1 Sibling of a Symbol

The sibling of a symbol a in a tree t is the label of the node that is the (left or right)
sibling of the node labeled with a in t. If the symbol a is not in t’s alphabet or it
occurs in a node with no sibling leaf, we define the sibling as being a itself; this
gives us the nice property that if t is consistent, then sibling t a 6= a if and only
if a has a sibling. As an illustration, we have sibling t a = b, sibling t b = a, and
sibling t c = c for the tree

t =

fun sibling :: ′a tree⇒ ′a⇒ ′a where
sibling (Leaf wb b) a = a
sibling (InnerNode w (Leaf wb b) (Leaf wc c)) a =

(if a = b then c else if a = c then b else a)
sibling (InnerNode w t1 t2) a =

(if a ∈ alphabet t1 then sibling t1 a
else if a ∈ alphabet t2 then sibling t2 a
else a)

Because sibling is defined using sequential pattern matching [9, 10], reasoning
about it can become tedious. Simplification rules therefore play an important
role.

lemma notin_alphabet_imp_sibling_id [simp]:
a /∈ alphabet t =⇒ sibling t a = a
〈proof 〉

lemma height_0_imp_sibling_id [simp]:
height t = 0 =⇒ sibling t a = a
〈proof 〉

lemma height_gt_0_in_alphabet_imp_sibling_left [simp]:
[[height t1 > 0; a ∈ alphabet t1]] =⇒
sibling (InnerNode w t1 t2) a = sibling t1 a
〈proof 〉

lemma height_gt_0_in_alphabet_imp_sibling_right [simp]:
[[height t2 > 0; a ∈ alphabet t1]] =⇒

19

sibling (InnerNode w t1 t2) a = sibling t1 a
〈proof 〉

lemma height_gt_0_notin_alphabet_imp_sibling_left [simp]:
[[height t1 > 0; a /∈ alphabet t1]] =⇒
sibling (InnerNode w t1 t2) a = sibling t2 a
〈proof 〉

lemma height_gt_0_notin_alphabet_imp_sibling_right [simp]:
[[height t2 > 0; a /∈ alphabet t1]] =⇒
sibling (InnerNode w t1 t2) a = sibling t2 a
〈proof 〉

lemma either_height_gt_0_imp_sibling [simp]:
height t1 > 0 ∨ height t2 > 0 =⇒
sibling (InnerNode w t1 t2) a =

(if a ∈ alphabet t1 then sibling t1 a else sibling t2 a)
〈proof 〉

The following rules are also useful for reasoning about siblings and alphabets.

lemma in_alphabet_imp_sibling_in_alphabet:
a ∈ alphabet t =⇒ sibling t a ∈ alphabet t
〈proof 〉

lemma sibling_ne_imp_sibling_in_alphabet:
sibling t a 6= a =⇒ sibling t a ∈ alphabet t
〈proof 〉

The default induction rule for sibling distinguishes four cases.

BASE CASE: t = Leaf w b.

INDUCTION STEP 1: t = InnerNode w (Leaf wb b) (Leaf wc c).

INDUCTION STEP 2: t = InnerNode w (InnerNode w1 t11 t12) t2.

INDUCTION STEP 3: t = InnerNode w t1 (InnerNode w2 t21 t22).

This rule leaves much to be desired. First, the last two cases overlap and can
normally be handled the same way, so they should be combined. Second, the
nested InnerNode constructors in the last two cases reduce readability. Third, un-
der the assumption that t is consistent, we would like to perform the same case
distinction on a as we did for tree_induct_consistent, with the same benefits for
automation. These observations lead us to develop a custom induction rule that
distinguishes the following cases.

BASE CASE: t = Leaf w b.

20

INDUCTION STEP 1: t = InnerNode w (Leaf wb b) (Leaf wc c) with b 6= c.

INDUCTION STEP 2: t = InnerNode w t1 t2 and either t1 or t2 has nonzero
height.

SUBCASE 1: a belongs to t1 but not to t2.

SUBCASE 2: a belongs to t2 but not to t1.

SUBCASE 3: a belongs to neither t1 nor t2.

The statement of the rule and its proof are similar to what we did for con-
sistent trees, the main difference being that we now have two induction steps
instead of one.

lemma sibling_induct_consistent
[consumes 1, case_names base step1 step21 step22 step23]:

[[consistent t;∧
w b a. P (Leaf w b) a;∧
w wb b wc c a. b 6= c =⇒ P (InnerNode w (Leaf wb b) (Leaf wc c)) a;∧
w t1 t2 a.
[[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = {};
height t1 > 0 ∨ height t2 > 0; a ∈ alphabet t1;
sibling t1 a ∈ alphabet t1; a /∈ alphabet t2;
sibling t1 a /∈ alphabet t2; P t1 a]] =⇒

P (InnerNode w t1 t2) a;∧
w t1 t2 a.
[[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = {};
height t1 > 0 ∨ height t2 > 0; a /∈ alphabet t1;
sibling t2 a /∈ alphabet t1; a ∈ alphabet t2;
sibling t2 a ∈ alphabet t2; P t2 a]] =⇒

P (InnerNode w t1 t2) a;∧
w t1 t2 a.
[[consistent t1; consistent t2; alphabet t1 ∩ alphabet t2 = {};
height t1 > 0 ∨ height t2 > 0; a /∈ alphabet t1; a /∈ alphabet t2]] =⇒

P (InnerNode w t1 t2) a]] =⇒
P t a
〈proof 〉

The custom induction rule allows us to prove new properties of sibling with little
effort.

lemma sibling_sibling_id [simp]:
consistent t =⇒ sibling t (sibling t a) = a
〈proof 〉

lemma sibling_reciprocal:

21

[[consistent t; sibling t a = b]] =⇒ sibling t b = a
〈proof 〉

lemma depth_height_imp_sibling_ne:
[[consistent t; depth t a = height t; height t > 0; a ∈ alphabet t]] =⇒
sibling t a 6= a
〈proof 〉

lemma depth_sibling [simp]:
consistent t =⇒ depth t (sibling t a) = depth t a
〈proof 〉

4.2 Leaf Interchange

The swapLeaves function takes a tree t together with two symbols a, b and their
frequencies wa, wb, and returns the tree t in which the leaf nodes labeled with a
and b are exchanged. When invoking swapLeaves, we normally pass freq t a and
freq t b for wa and wb.

Note that we do not bother updating the cached weight of the ancestor nodes
when performing the interchange. The cached weight is used only in the imple-
mentation of Huffman’s algorithm, which doesn’t invoke swapLeaves.

primrec swapLeaves :: ′a tree⇒ nat⇒ ′a⇒ nat⇒ ′a⇒ ′a tree where
swapLeaves (Leaf wc c) wa a wb b =

(if c = a then Leaf wb b else if c = b then Leaf wa a else Leaf wc c)
swapLeaves (InnerNode w t1 t2) wa a wb b =

InnerNode w (swapLeaves t1 wa a wb b) (swapLeaves t2 wa a wb b)

Swapping a symbol a with itself leaves the tree t unchanged if a does not belong
to it or if the specified frequencies wa and wb equal freq t a.

lemma swapLeaves_id_when_notin_alphabet [simp]:
a /∈ alphabet t =⇒ swapLeaves t w a w ′ a = t
〈proof 〉

lemma swapLeaves_id [simp]:
consistent t =⇒ swapLeaves t (freq t a) a (freq t a) a = t
〈proof 〉

The alphabet, consistency, symbol depths, height, and symbol frequencies of the
tree swapLeaves t wa a wb b can be related to the homologous properties of t.

lemma alphabet_swapLeaves:
alphabet (swapLeaves t wa a wb b) =

(if a ∈ alphabet t then
if b ∈ alphabet t then alphabet t else (alphabet t − {a}) ∪ {b}

22

else
if b ∈ alphabet t then (alphabet t − {b}) ∪ {a} else alphabet t)

〈proof 〉

lemma consistent_swapLeaves [simp]:
consistent t =⇒ consistent (swapLeaves t wa a wb b)
〈proof 〉

lemma depth_swapLeaves_neither [simp]:
[[consistent t; c 6= a; c 6= b]] =⇒ depth (swapLeaves t wa a wb b) c = depth t c
〈proof 〉

lemma height_swapLeaves [simp]:
height (swapLeaves t wa a wb b) = height t
〈proof 〉

lemma freq_swapLeaves [simp]:
[[consistent t; a 6= b]] =⇒
freq (swapLeaves t wa a wb b) =

(λc. if c = a then if b ∈ alphabet t then wa else 0
else if c = b then if a ∈ alphabet t then wb else 0
else freq t c)

〈proof 〉

For the lemmas concerned with the resulting tree’s weight and cost, we avoid
subtraction on natural numbers by rearranging terms. For example, we write

weight (swapLeaves t wa a wb b) + freq t a = weight t + wb

rather than the more conventional

weight (swapLeaves t wa a wb b) = weight t + wb − freq t a.

In Isabelle/HOL, these two equations are not equivalent, because by definition
m− n = 0 if n > m. We could use the second equation and additionally assert
that freq t a ≤ weight t (an easy consequence of weight_eq_Sum_freq), and then
apply the arith tactic, but it is much simpler to use the first equation and stay
with simp and auto. Another option would be to use integers instead of natural
numbers.

lemma weight_swapLeaves:
[[consistent t; a 6= b]] =⇒
if a ∈ alphabet t then

if b ∈ alphabet t then
weight (swapLeaves t wa a wb b) + freq t a + freq t b =

weight t + wa + wb
else

23

weight (swapLeaves t wa a wb b) + freq t a = weight t + wb
else

if b ∈ alphabet t then
weight (swapLeaves t wa a wb b) + freq t b = weight t + wa

else
weight (swapLeaves t wa a wb b) = weight t

〈proof 〉

lemma cost_swapLeaves:
[[consistent t; a 6= b]] =⇒
if a ∈ alphabet t then

if b ∈ alphabet t then
cost (swapLeaves t wa a wb b) + freq t a × depth t a
+ freq t b × depth t b =

cost t + wa × depth t b + wb × depth t a
else

cost (swapLeaves t wa a wb b) + freq t a × depth t a =
cost t + wb × depth t a

else
if b ∈ alphabet t then

cost (swapLeaves t wa a wb b) + freq t b × depth t b =
cost t + wa × depth t b

else
cost (swapLeaves t wa a wb b) = cost t

〈proof 〉

Common sense tells us that the following statement is valid: “If Astrid exchanges
her house with Bernard’s neighbor, Bernard becomes Astrid’s new neighbor.” A
similar property holds for binary trees.

lemma sibling_swapLeaves_sibling [simp]:
[[consistent t; sibling t b 6= b; a 6= b]] =⇒
sibling (swapLeaves t wa a ws (sibling t b)) a = b
〈proof 〉

4.3 Symbol Interchange

The swapSyms function provides a simpler interface to swapLeaves, with freq t a
and freq t b in place of wa and wb. Most lemmas about swapSyms are directly
adapted from the homologous results about swapLeaves.

definition swapSyms :: ′a tree⇒ ′a⇒ ′a⇒ ′a tree where
swapSyms t a b ≡ swapLeaves t (freq t a) a (freq t b) b

lemma swapSyms_id [simp]:

24

consistent t =⇒ swapSyms t a a = t
〈proof 〉

lemma alphabet_swapSyms [simp]:
[[a ∈ alphabet t; b ∈ alphabet t]] =⇒ alphabet (swapSyms t a b) = alphabet t
〈proof 〉

lemma consistent_swapSyms [simp]:
consistent t =⇒ consistent (swapSyms t a b)
〈proof 〉

lemma depth_swapSyms_neither [simp]:
[[consistent t; c 6= a; c 6= b]] =⇒
depth (swapSyms t a b) c = depth t c
〈proof 〉

lemma freq_swapSyms [simp]:
[[consistent t; a ∈ alphabet t; b ∈ alphabet t]] =⇒
freq (swapSyms t a b) = freq t
〈proof 〉

lemma cost_swapSyms:
assumes consistent t a ∈ alphabet t b ∈ alphabet t
shows cost (swapSyms t a b) + freq t a × depth t a + freq t b × depth t b =

cost t + freq t a × depth t b + freq t b × depth t a
〈proof 〉

If a’s frequency is lower than or equal to b’s, and a is higher up in the tree than b
or at the same level, then interchanging a and b does not increase the tree’s cost.

lemma le_le_imp_sum_mult_le_sum_mult:
[[i ≤ j; m ≤ (n::nat)]] =⇒ i × n + j × m ≤ i × m + j × n
〈proof 〉

lemma cost_swapSyms_le:
assumes consistent t a ∈ alphabet t b ∈ alphabet t freq t a ≤ freq t b

depth t a ≤ depth t b
shows cost (swapSyms t a b) ≤ cost t
〈proof 〉

As stated earlier, “If Astrid exchanges her house with Bernard’s neighbor, Bernard
becomes Astrid’s new neighbor.”

lemma sibling_swapSyms_sibling [simp]:
[[consistent t; sibling t b 6= b; a 6= b]] =⇒
sibling (swapSyms t a (sibling t b)) a = b
〈proof 〉

25

“If Astrid exchanges her house with Bernard, Astrid becomes Bernard’s old neigh-
bor’s new neighbor.”

lemma sibling_swapSyms_other_sibling [simp]:
[[consistent t; sibling t b 6= a; sibling t b 6= b; a 6= b]] =⇒
sibling (swapSyms t a b) (sibling t b) = a
〈proof 〉

4.4 Four-Way Symbol Interchange

The swapSyms function exchanges two symbols a and b. We use it to define the
four-way symbol interchange function swapFourSyms, which takes four symbols
a, b, c, d with a 6= b and c 6= d, and exchanges them so that a and b occupy
c and d’s positions.

A naive definition of this function would be

swapFourSyms t a b c d ≡ swapSyms (swapSyms t a c) b d.

This definition fails in the face of aliasing: If a = d, but b 6= c, then swapFourSyms
a b c d would leave a in b’s position.2

definition swapFourSyms :: ′a tree⇒ ′a⇒ ′a⇒ ′a⇒ ′a⇒ ′a tree where
swapFourSyms t a b c d ≡

if a = d then swapSyms t b c
else if b = c then swapSyms t a d
else swapSyms (swapSyms t a c) b d

Lemmas about swapFourSyms are easy to prove by expanding its definition.

lemma alphabet_swapFourSyms [simp]:
[[a ∈ alphabet t; b ∈ alphabet t; c ∈ alphabet t; d ∈ alphabet t]] =⇒
alphabet (swapFourSyms t a b c d) = alphabet t
〈proof 〉

lemma consistent_swapFourSyms [simp]:
consistent t =⇒ consistent (swapFourSyms t a b c d)
〈proof 〉

lemma freq_swapFourSyms [simp]:
[[consistent t; a ∈ alphabet t; b ∈ alphabet t; c ∈ alphabet t;

d ∈ alphabet t]] =⇒
freq (swapFourSyms t a b c d) = freq t
〈proof 〉

2Cormen et al. [4, p. 390] forgot to consider this case in their proof. Thomas Cormen indicated
in a personal communication that this will be corrected in the next edition of the book.

26

More Astrid and Bernard insanity: “If Astrid and Bernard exchange their houses
with Carmen and her neighbor, Astrid and Bernard will now be neighbors.”

lemma sibling_swapFourSyms_when_4th_is_sibling:
assumes consistent t a ∈ alphabet t b ∈ alphabet t c ∈ alphabet t

a 6= b sibling t c 6= c
shows sibling (swapFourSyms t a b c (sibling t c)) a = b
〈proof 〉

4.5 Sibling Merge

Given a symbol a, the mergeSibling function transforms the tree

into

The frequency of a in the result is the sum of the original frequencies of a and b,
so as not to alter the tree’s weight.

fun mergeSibling :: ′a tree⇒ ′a⇒ ′a tree where
mergeSibling (Leaf wb b) a = Leaf wb b
mergeSibling (InnerNode w (Leaf wb b) (Leaf wc c)) a =

(if a = b ∨ a = c then Leaf (wb + wc) a
else InnerNode w (Leaf wb b) (Leaf wc c))

mergeSibling (InnerNode w t1 t2) a =
InnerNode w (mergeSibling t1 a) (mergeSibling t2 a)

The definition of mergeSibling has essentially the same structure as that of sibling.
As a result, the custom induction rule that we derived for sibling works equally
well for reasoning about mergeSibling.

lemmas mergeSibling_induct_consistent = sibling_induct_consistent

The properties of mergeSibling echo those of sibling. Like with sibling, simplifica-
tion rules are crucial.

lemma notin_alphabet_imp_mergeSibling_id [simp]:
a /∈ alphabet t =⇒ mergeSibling t a = t
〈proof 〉

27

lemma height_gt_0_imp_mergeSibling_left [simp]:
height t1 > 0 =⇒
mergeSibling (InnerNode w t1 t2) a =

InnerNode w (mergeSibling t1 a) (mergeSibling t2 a)
〈proof 〉

lemma height_gt_0_imp_mergeSibling_right [simp]:
height t2 > 0 =⇒
mergeSibling (InnerNode w t1 t2) a =

InnerNode w (mergeSibling t1 a) (mergeSibling t2 a)
〈proof 〉

lemma either_height_gt_0_imp_mergeSibling [simp]:
height t1 > 0 ∨ height t2 > 0 =⇒
mergeSibling (InnerNode w t1 t2) a =

InnerNode w (mergeSibling t1 a) (mergeSibling t2 a)
〈proof 〉

lemma alphabet_mergeSibling [simp]:
[[consistent t; a ∈ alphabet t]] =⇒
alphabet (mergeSibling t a) = (alphabet t − {sibling t a}) ∪ {a}
〈proof 〉

lemma consistent_mergeSibling [simp]:
consistent t =⇒ consistent (mergeSibling t a)
〈proof 〉

lemma freq_mergeSibling:
[[consistent t; a ∈ alphabet t; sibling t a 6= a]] =⇒
freq (mergeSibling t a) =

(λc. if c = a then freq t a + freq t (sibling t a)
else if c = sibling t a then 0
else freq t c)

〈proof 〉

lemma weight_mergeSibling [simp]:
weight (mergeSibling t a) = weight t
〈proof 〉

If a has a sibling, merging a and its sibling reduces t’s cost by freq t a + freq t
(sibling t a).

lemma cost_mergeSibling:
[[consistent t; sibling t a 6= a]] =⇒
cost (mergeSibling t a) + freq t a + freq t (sibling t a) = cost t
〈proof 〉

28

4.6 Leaf Split

The splitLeaf function undoes the merging performed by mergeSibling: Given two
symbols a, b and two frequencies wa, wb, it transforms

into

In the resulting tree, a has frequency wa and b has frequency wb. We normally
invoke it with wa and wb such that freq t a = wa + wb.

primrec splitLeaf :: ′a tree⇒ nat⇒ ′a⇒ nat⇒ ′a⇒ ′a tree where
splitLeaf (Leaf wc c) wa a wb b =

(if c = a then InnerNode wc (Leaf wa a) (Leaf wb b) else Leaf wc c)
splitLeaf (InnerNode w t1 t2) wa a wb b =

InnerNode w (splitLeaf t1 wa a wb b) (splitLeaf t2 wa a wb b)

primrec splitLeaf F :: ′a forest⇒ nat⇒ ′a⇒ nat⇒ ′a⇒ ′a forest where
splitLeaf F [] wa a wb b = []
splitLeaf F (t · ts) wa a wb b =

splitLeaf t wa a wb b · splitLeaf F ts wa a wb b

Splitting leaf nodes affects the alphabet, consistency, symbol frequencies, weight,
and cost in unsurprising ways.

lemma notin_alphabet_imp_splitLeaf_id [simp]:
a /∈ alphabet t =⇒ splitLeaf t wa a wb b = t
〈proof 〉

lemma notin_alphabetF_imp_splitLeaf F_id [simp]:
a /∈ alphabetF ts =⇒ splitLeaf F ts wa a wb b = ts
〈proof 〉

lemma alphabet_splitLeaf [simp]:
alphabet (splitLeaf t wa a wb b) =

(if a ∈ alphabet t then alphabet t ∪ {b} else alphabet t)
〈proof 〉

lemma consistent_splitLeaf [simp]:
[[consistent t; b /∈ alphabet t]] =⇒ consistent (splitLeaf t wa a wb b)

29

〈proof 〉

lemma freq_splitLeaf [simp]:
[[consistent t; b /∈ alphabet t]] =⇒
freq (splitLeaf t wa a wb b) =

(if a ∈ alphabet t then
(λc. if c = a then wa else if c = b then wb else freq t c)

else
freq t)

〈proof 〉

lemma weight_splitLeaf [simp]:
[[consistent t; a ∈ alphabet t; freq t a = wa + wb]] =⇒
weight (splitLeaf t wa a wb b) = weight t
〈proof 〉

lemma cost_splitLeaf [simp]:
[[consistent t; a ∈ alphabet t; freq t a = wa + wb]] =⇒
cost (splitLeaf t wa a wb b) = cost t + wa + wb
〈proof 〉

4.7 Weight Sort Order

An invariant of Huffman’s algorithm is that the forest is sorted by weight. This
is expressed by the sortedByWeight function.

fun sortedByWeight :: ′a forest⇒ bool where
sortedByWeight [] = True
sortedByWeight [t] = True
sortedByWeight (t1 · t2 · ts) =

(weight t1 ≤ weight t2 ∧ sortedByWeight (t2 · ts))

The function obeys the following fairly obvious laws.

lemma sortedByWeight_Cons_imp_sortedByWeight:
sortedByWeight (t · ts) =⇒ sortedByWeight ts
〈proof 〉

lemma sortedByWeight_Cons_imp_forall_weight_ge:
sortedByWeight (t · ts) =⇒ ∀u ∈ set ts. weight u ≥ weight t
〈proof 〉

lemma sortedByWeight_insortTree:
[[sortedByWeight ts; height t = 0; heightF ts = 0]] =⇒
sortedByWeight (insortTree t ts)
〈proof 〉

30

4.8 Pair of Minimal Symbols

The minima predicate expresses that two symbols a, b ∈ alphabet t have the lowest
frequencies in the tree t and that freq t a ≤ freq t b. Minimal symbols need not be
uniquely defined.

definition minima :: ′a tree⇒ ′a⇒ ′a⇒ bool where
minima t a b ≡

a ∈ alphabet t ∧ b ∈ alphabet t ∧ a 6= b ∧ freq t a ≤ freq t b
∧ (∀c ∈ alphabet t. c 6= a −→ c 6= b −→

freq t c ≥ freq t a ∧ freq t c ≥ freq t b)

5 Formalization of the Textbook Proof

5.1 Four-Way Symbol Interchange Cost Lemma

If a and b are minima, and c and d are at the very bottom of the tree, then ex-
changing a and b with c and d doesn’t increase the cost. Graphically, we have

cost ≤ cost

This cost property is part of Knuth’s proof:

Let V be an internal node of maximum distance from the root. If w1
and w2 are not the weights already attached to the children of V, we
can interchange them with the values that are already there; such an
interchange does not increase the weighted path length.

Lemma 16.2 in Cormen et al. [4, p. 389] expresses a similar property, which turns
out to be a corollary of our cost property:

Let C be an alphabet in which each character c ∈ C has frequency
f [c]. Let x and y be two characters in C having the lowest frequencies.
Then there exists an optimal prefix code for C in which the codewords
for x and y have the same length and differ only in the last bit.

31

lemma cost_swapFourSyms_le:
assumes consistent t minima t a b c ∈ alphabet t d ∈ alphabet t

depth t c = height t depth t d = height t c 6= d
shows cost (swapFourSyms t a b c d) ≤ cost t
〈proof 〉

5.2 Leaf Split Optimality Lemma

The tree splitLeaf t wa a wb b is optimum if t is optimum, under a few assumptions,
notably that a and b are minima of the new tree and that freq t a = wa + wb.
Graphically:

optimum =⇒ optimum

This corresponds to the following fragment of Knuth’s proof:

Now it is easy to prove that the weighted path length of such a tree is
minimized if and only if the tree with

replaced by

has minimum path length for the weights w1 + w2, w3, . . . , wm.

We only need the “if” direction of Knuth’s equivalence. Lemma 16.3 in Cormen
et al. [4, p. 391] expresses essentially the same property:

Let C be a given alphabet with frequency f [c] defined for each charac-
ter c ∈ C. Let x and y be two characters in C with minimum frequency.
Let C′ be the alphabet C with characters x, y removed and (new) char-
acter z added, so that C′ = C− {x, y} ∪ {z}; define f for C′ as for C,
except that f [z] = f [x] + f [y]. Let T′ be any tree representing an opti-
mal prefix code for the alphabet C′. Then the tree T, obtained from T′

by replacing the leaf node for z with an internal node having x and y
as children, represents an optimal prefix code for the alphabet C.

32

The proof is as follows: We assume that t has a cost less than or equal to that
of any other comparable tree v and show that splitLeaf t wa a wb b has a cost
less than or equal to that of any other comparable tree u. By exists_at_height
and depth_height_imp_sibling_ne, we know that some symbols c and d appear in
sibling nodes at the very bottom of u:

(The question mark is there to remind us that we know nothing specific about u’s
structure.) From u we construct a new tree swapFourSyms u a b c d in which the
minima a and b are siblings:

Merging a and b gives a tree comparable with t, which we can use to instantiate
v in the assumption:

33

With this instantiation, the proof is easy:

cost (splitLeaf t a wa b wb)
= (cost_splitLeaf)

cost t + wa + wb
≤ (assumption)

cost (

v︷ ︸︸ ︷
mergeSibling (swapFourSyms u a b c d) a) + wa + wb

= (cost_mergeSibling)
cost (swapFourSyms u a b c d)

≤ (cost_swapFourSyms_le)
cost u.

In contrast, the proof in Cormen et al. is by contradiction: Essentially, they assume
that there exists a tree u with a lower cost than splitLeaf t a wa b wb and show that
there exists a tree v with a lower cost than t, contradicting the hypothesis that t is
optimum. In place of cost_swapFourSyms_le, they invoke their lemma 16.2, which
is questionable since u is not necessarily optimum.3

Our proof relies on the following lemma, which asserts that a and b are min-
ima of u.

lemma twice_freq_le_imp_minima:
[[∀c ∈ alphabet t. wa ≤ freq t c ∧ wb ≤ freq t c;

alphabet u = alphabet t ∪ {b}; a ∈ alphabet u; a 6= b;
freq u = (λc. if c = a then wa else if c = b then wb else freq t c);
wa ≤ wb]] =⇒

minima u a b
〈proof 〉

Now comes the key lemma.

lemma optimum_splitLeaf :
assumes consistent t optimum t a ∈ alphabet t b /∈ alphabet t

freq t a = wa + wb ∀c ∈ alphabet t. freq t c ≥ wa ∧ freq t c ≥ wb
wa ≤ wb

shows optimum (splitLeaf t wa a wb b)
〈proof 〉

5.3 Leaf Split Commutativity Lemma

A key property of Huffman’s algorithm is that once it has combined two lowest-
weight trees using uniteTrees, it doesn’t visit these trees ever again. This suggests
that splitting a leaf node before applying the algorithm should give the same
result as applying the algorithm first and splitting the leaf node afterward. The
diagram below illustrates the situation:

3Thomas Cormen commented that this step will be clarified in the next edition of the book.

34

(1)

(2a) (2b)

(3a) (3b)

From the original forest (1), we can either run the algorithm (2a) and then split a
(3a) or split a (2b) and then run the algorithm (3b). Our goal is to show that trees
(3a) and (3b) are identical. Formally, we prove that

splitLeaf (huffman ts) wa a wb b = huffman (splitLeaf F ts wa a wb b)

when ts is consistent, a ∈ alphabetF ts, b /∈ alphabetF ts, and freqF ts a = wa + wb.
But before we can prove this commutativity lemma, we need to introduce a few
simple lemmas.

lemma cachedWeight_splitLeaf [simp]:
cachedWeight (splitLeaf t wa a wb b) = cachedWeight t
〈proof 〉

lemma splitLeaf F_insortTree_when_in_alphabet_left [simp]:
[[a ∈ alphabet t; consistent t; a /∈ alphabetF ts; freq t a = wa + wb]] =⇒
splitLeaf F (insortTree t ts) wa a wb b = insortTree (splitLeaf t wa a wb b) ts
〈proof 〉

lemma splitLeaf F_insortTree_when_in_alphabetF_tail [simp]:
[[a ∈ alphabetF ts; consistentF ts; a /∈ alphabet t; freqF ts a = wa + wb]] =⇒
splitLeaf F (insortTree t ts) wa a wb b =

35

insortTree t (splitLeaf F ts wa a wb b)
〈proof 〉

We are now ready to prove the commutativity lemma.

lemma splitLeaf_huffman_commute:
[[consistentF ts; ts 6= []; a ∈ alphabetF ts; freqF ts a = wa + wb]] =⇒
splitLeaf (huffman ts) wa a wb b = huffman (splitLeaf F ts wa a wb b)
〈proof 〉

An important consequence of the commutativity lemma is that applying Huff-
man’s algorithm on a forest of the form

gives the same result as applying the algorithm on the “flat” forest

followed by splitting the leaf node a into two nodes a, b with frequencies wa,
wb. The lemma effectively provides a way to flatten the forest at each step of the
algorithm. Its invocation is implicit in the textbook proof.

5.4 Optimality Theorem

We are one lemma away from our main result.

lemma max_0_imp_0 [simp]:
(max x y = (0::nat)) = (x = 0 ∧ y = 0)
〈proof 〉

theorem optimum_huffman:
[[consistentF ts; heightF ts = 0; sortedByWeight ts; ts 6= []]] =⇒
optimum (huffman ts)〈proof 〉

end

So what have we achieved? Assuming that our definitions really mean what
we intend them to mean, we established that our functional implementation of
Huffman’s algorithm, when invoked properly, constructs a binary tree that rep-
resents an optimal prefix code for the specified alphabet and frequencies. Using
Isabelle’s code generator [6], we can convert the Isabelle code into Standard ML,
OCaml, or Haskell and use it in a real application.

36

As a side note, the optimum_huffman theorem assumes that the forest ts passed
to huffman consists exclusively of leaf nodes. It is tempting to relax this restriction,
by requiring instead that the forest ts has the lowest cost among forests of the
same size. We would define optimality of a forest as follows:

optimumF ts ≡ (∀us. length ts = length us −→ consistentF us −→
alphabetF ts = alphabetF us −→ freqF ts = freqF us −→
costF ts ≤ costF us)

with costF [] = 0 and costF (t · ts) = cost t + costF ts. However, the modified propo-
sition does not hold. A counterexample is the optimum forest

for which the algorithm constructs the tree

of greater cost than

6 Related Work

Laurent Théry’s Coq formalization of Huffman’s algorithm [14, 15] is an obvious
yardstick for our work. It has a somewhat wider scope, proving among others
the isomorphism between prefix codes and full binary trees. With 291 theorems,
it is also much larger.

Théry identified the following difficulties in formalizing the textbook proof:

1. The leaf interchange process that brings the two minimal symbols together
is tedious to formalize.

2. The sibling merging process requires introducing a new symbol for the
merged node, which complicates the formalization.

3. The algorithm constructs the tree in a bottom-up fashion. While top-down
procedures can usually be proved by structural induction, bottom-up pro-
cedures often require more sophisticated induction principles and larger
invariants.

37

4. The informal proof relies on the notion of depth of a node. Defining this
notion formally is problematic, because the depth can only be seen as a
function if the tree is composed of distinct nodes.

To circumvent these difficulties, Théry introduced the ingenious concept of
cover. A forest ts is a cover of a tree t if t can be built from ts by adding inner
nodes on top of the trees in ts. The term “cover” is easier to understand if the
binary trees are drawn with the root at the bottom of the page, like natural trees.
Huffman’s algorithm is a refinement of the cover concept. The main proof con-
sists in showing that the cost of huffman ts is less than or equal to that of any other
tree for which ts is a cover. It relies on a few auxiliary definitions, notably an “or-
dered cover” concept that facilitates structural induction and a four-argument
depth predicate (confusingly called height). Permutations also play a central role.

Incidentally, our experience suggests that the potential problems identified
by Théry can be overcome more directly without too much work, leading to a
simpler proof:

1. Formalizing the leaf interchange did not prove overly tedious. Among our
95 lemmas and theorems, 24 concern swapLeaves, swapSyms, and swapFour-
Syms.

2. The generation of a new symbol for the resulting node when merging two
sibling nodes in mergeSibling was trivially solved by reusing one of the two
merged symbols.

3. The bottom-up nature of the tree construction process was addressed by
using the length of the forest as the induction measure and by merging the
two minimal symbols, as in Knuth’s proof.

4. By restricting our attention to consistent trees, we were able to define the
depth function simply and meaningfully.

7 Conclusion

The goal of most formal proofs is to increase our confidence in a result. In the
case of Huffman’s algorithm, however, the chances that a bug would have gone
unnoticed for the 56 years since its publication, under the scrutiny of leading
computer scientists, seem extremely low; and the existence of a Coq proof should
be sufficient to remove any remaining doubts.

The main contribution of this report has been to demonstrate that the textbook
proof of Huffman’s algorithm can be elegantly formalized using a state-of-the-art
theorem prover such as Isabelle/HOL. In the process, we uncovered a few minor
snags in the proof given in Cormen et al. [4].

38

We also found that custom induction rules, in combination with suitable sim-
plification rules, greatly help the automatic proof tactics, sometimes reducing 30-
line proof scripts to one-liners. We successfully applied this approach for han-
dling both the ubiquitous “datatype + wellformedness predicate” combination
(′a tree + consistent) and functions defined by sequential pattern matching (sibling
and mergeSibling). Our experience suggests that such rules, which are uncom-
mon in formalizations, are highly valuable and versatile. Moreover, Isabelle’s
induct_scheme and lexicographic_order tactics make these easy to prove.

Formalizing the proof of Huffman’s algorithm also led to a deeper under-
standing of this classic algorithm. Many of the lemmas, notably the leaf split
commutativity lemma of Section 5.3, have not been found in the literature and
express fundamental properties of the algorithm. Other discoveries didn’t find
their way into the final proof. In particular, each step of the algorithm appears to
preserve the invariant that the nodes in a forest are ordered by weight from left
to right, bottom to top, as in the example below:

It is not hard to prove formally that a tree exhibiting this property is optimum.
On the other hand, proving that the algorithm preserves this invariant seems
difficult—more difficult than formalizing the textbook proof—and remains a sug-
gestion for future work.

A few other directions for future work suggest themselves. First, we could
formalize some of our hypotheses, notably our restriction to full and consistent
binary trees. The current formalization says nothing about the algorithm’s appli-
cation for data compression, so the next step could be to extend the proof’s scope
to cover encode/decode functions and show that full binary trees are isomorphic
to prefix codes, as done in the Coq development. Independently, we could gen-
eralize the development to n-ary trees.

Acknowledgments

I am grateful to several people for their help in producing this report. Tobias
Nipkow suggested that I cut my teeth on Huffman coding and discussed several
(sometimes flawed) drafts of the proof. He also provided many insights into Is-
abelle, which led to considerable simplifications. Alexander Krauss answered all
my Isabelle questions and helped me with the trickier proofs. Thomas Cormen

39

and Donald Knuth were both gracious enough to discuss their proofs with me,
and Donald Knuth also suggested a terminology change. Finally, Mark Summer-
field and the anonymous reviewers of the corresponding journal paper proposed
many textual improvements.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1983.

[2] Stephan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL.
In J. Cuellar and Z. Liu, editors, Software Engineering and Formal Meth-
ods (SEFM 2004), 230–239, IEEE Computer Society, 2004. Available online at
http://isabelle.in.tum.de/~nipkow/pubs/sefm04.html.

[3] Lukas Bulwahn and Alexander Krauss. Finding lexicographic orders for ter-
mination proofs in Isabelle/HOL. In K. Schneider and J. Brandt, editors,
Theorem Proving in Higher Order Logics (TPHOLs 2007), Volume 4732 of
Lecture Notes in Computer Science, 38–53, Springer-Verlag, 2007. Available
online at http://www4.in.tum.de/~krauss/lexord/lexord.pdf.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (Second Edition). MIT Press, 2001 and
McGraw-Hill, 2002.

[5] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,
1993.

[6] Florian Haftmann and Tobias Nipkow. A code generator framework for
Isabelle/HOL. In K. Schneider and J. Brandt, editors, Theorem Proving
in Higher Order Logics (TPHOLs 2007), Volume 4732 of Lecture Notes
in Computer Science, 128–143, Springer-Verlag, 2007. Available online at
http://es.cs.uni-kl.de/TPHOLs-2007/proceedings/B-128.pdf.

[7] David A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the Institute of Radio Engineers 40(9):1098–1101,
September 1952. Available online at http://compression.ru/download/
articles/huff/huffman_1952_minimum-redundancy-codes.pdf.

[8] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental
Algorithms (Third Edition). Addison-Wesley, 1997.

[9] Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. Depart-
ment of Informatics, Technische Universität München, 2007. Updated ver-
sion, http://isabelle.in.tum.de/doc/functions.pdf, June 8, 2008.

40

http://isabelle.in.tum.de/~nipkow/pubs/sefm04.html
http://www4.in.tum.de/~krauss/lexord/lexord.pdf
http://es.cs.uni-kl.de/TPHOLs-2007/proceedings/B-128.pdf
http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf
http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf
http://isabelle.in.tum.de/doc/functions.pdf

[10] Alexander Krauss. Automating Recursive Definitions and Termination
Proofs in Higher-Order Logic. Ph.D. thesis, Department of Informatics,
Technische Universität München, 2009.

[11] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defi-
nition of Standard ML (Revised Edition). MIT Press, 1997.

[12] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Volume 2283 of Lecture Notes
in Computer Science, Springer-Verlag, 2002. Updated version, http://
isabelle.in.tum.de/doc/tutorial.pdf, June 8, 2008.

[13] J. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Jour-
nal of Research and Development 20(3):198–203, May 1976. Available online
at http://www.research.ibm.com/journal/rd/203/ibmrd2003B.pdf.

[14] Laurent Théry. A Correctness Proof of Huffman Algorithm. http://coq.
inria.fr/contribs/Huffman.html, October 2003.

[15] Laurent Théry. Formalising Huffman’s Algorithm. Technical report TRCS
034/2004, Department of Informatics, University of L’Aquila, 2004.

[16] Markus Wenzel. The Isabelle/Isar Reference Manual. Department of In-
formatics, Technische Universität München, 2002. Updated version, http:
//isabelle.in.tum.de/doc/isar-ref.pdf, June 8, 2008.

41

http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://www.research.ibm.com/journal/rd/203/ibmrd2003B.pdf
http://coq.inria.fr/contribs/Huffman.html
http://coq.inria.fr/contribs/Huffman.html
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Binary Codes
	Binary Trees
	Huffman's Algorithm
	The Textbook Proof
	Overview of the Formalization
	Overview of Isabelle's HOL Logic
	Head of the Theory File

	Definition of Prefix Code Trees and Forests
	Tree Datatype
	Forest Datatype
	Alphabet
	Consistency
	Symbol Depths
	Height
	Symbol Frequencies
	Weight
	Cost
	Optimality

	Functional Implementation of Huffman's Algorithm
	Cached Weight
	Tree Union
	Ordered Tree Insertion
	The Main Algorithm

	Definition of Auxiliary Functions Used in the Proof
	Sibling of a Symbol
	Leaf Interchange
	Symbol Interchange
	Four-Way Symbol Interchange
	Sibling Merge
	Leaf Split
	Weight Sort Order
	Pair of Minimal Symbols

	Formalization of the Textbook Proof
	Four-Way Symbol Interchange Cost Lemma
	Leaf Split Optimality Lemma
	Leaf Split Commutativity Lemma
	Optimality Theorem

	Related Work
	Conclusion

