
Compositional properties of crypto-based

components

Maria Spichkova

January 11, 2014

Abstract

This paper presents an Isabelle/HOL [?] set of theories which allows
to specify crypto-based components and to verify their composition
properties wrt. cryptographic aspects. We introduce a formalisation
of the security property of data secrecy, the corresponding definitions
and proofs. A part of these definitions is based on [?].
Please note that here we import the Isabelle/HOL theory ListEx-
tras.thy, presented in [?].

Contents

1 Auxiliary data types 2

2 Correctness of the relations between sets of Input/Output
channels 2

3 Secrecy: Definitions and properties 4

4 Local Secrets of a component 19

5 Knowledge of Keys and Secrets 26

1

1 Auxiliary data types

theory Secrecy-types
imports Main
begin

— We assume disjoint sets: Data of data values,
— Secrets of unguessable values, Keys - set of cryptographic keys.
— Based on these sets, we specify the sets EncType of encryptors that may be
— used for encryption or decryption, and Expression of expression items.
— The specification (component) identifiers should be listed in the set specID,
— the channel indentifiers should be listed in the set chanID.

datatype Keys = CKey | CKeyP | SKey | SKeyP | genKey
datatype Secrets = secretD | N | NA
type-synonym Var = nat
type-synonym Data = nat
datatype KS = kKS Keys | sKS Secrets
datatype EncType = kEnc Keys | vEnc Var
datatype specID = sComp1 | sComp2 | sComp3 | sComp4
datatype Expression = kE Keys | sE Secrets | dE Data | idE specID
datatype chanID = ch1 | ch2 | ch3 | ch4

primrec Expression2KSL:: Expression list ⇒ KS list
where

Expression2KSL [] = [] |
Expression2KSL (x#xs) =

((case x of (kE m) ⇒ [kKS m]
| (sE m) ⇒ [sKS m]
| (dE m) ⇒ []
| (idE m) ⇒ []) @ Expression2KSL xs)

primrec KS2Expression:: KS ⇒ Expression
where

KS2Expression (kKS m) = (kE m) |
KS2Expression (sKS m) = (sE m)

end

2 Correctness of the relations between sets of In-
put/Output channels

theory inout
imports Secrecy-types
begin

consts
subcomponents :: specID ⇒ specID set

2

— Mappings, defining sets of input, local, and output channels
— of a component
consts

ins :: specID ⇒ chanID set
loc :: specID ⇒ chanID set
out :: specID ⇒ chanID set

— Predicate insuring the correct mapping from the component identifier
— to the set of input channels of a component
definition

inStream :: specID ⇒ chanID set ⇒ bool
where

inStream x y ≡ (ins x = y)

— Predicate insuring the correct mapping from the component identifier
— to the set of local channels of a component
definition

locStream :: specID ⇒ chanID set ⇒ bool
where

locStream x y ≡ (loc x = y)

— Predicate insuring the correct mapping from the component identifier
— to the set of output channels of a component
definition

outStream :: specID ⇒ chanID set ⇒ bool
where

outStream x y ≡ (out x = y)

— Predicate insuring the correct relations between
— to the set of input, output and local channels of a component
definition

correctInOutLoc :: specID ⇒ bool
where

correctInOutLoc x ≡
(ins x) ∩ (out x) = {}
∧ (ins x) ∩ (loc x) = {}
∧ (loc x) ∩ (out x) = {}

— Predicate insuring the correct relations between
— sets of input channels within a composed component
definition

correctCompositionIn :: specID ⇒ bool
where

correctCompositionIn x ≡
(ins x) = (

⋃
(ins ‘ (subcomponents x)) − (loc x))

∧ (ins x) ∩ (
⋃

(out ‘ (subcomponents x))) = {}

— Predicate insuring the correct relations between

3

— sets of output channels within a composed component
definition

correctCompositionOut :: specID ⇒ bool
where

correctCompositionOut x ≡
(out x) = (

⋃
(out ‘ (subcomponents x))− (loc x))

∧ (out x) ∩ (
⋃

(ins ‘ (subcomponents x))) = {}

— Predicate insuring the correct relations between
— sets of local channels within a composed component
definition

correctCompositionLoc :: specID ⇒ bool
where

correctCompositionLoc x ≡
(loc x) =

⋃
(ins ‘ (subcomponents x))

∩
⋃

(out ‘ (subcomponents x))

— If a component is an elementary one (has no subcomponents)
— its set of local channels should be empty
lemma subcomponents-loc:
assumes correctCompositionLoc x

and subcomponents x = {}
shows loc x = {}
using assms by (simp add : correctCompositionLoc-def)

end

3 Secrecy: Definitions and properties

theory Secrecy
imports Secrecy-types inout ListExtras
begin

— Encryption, decryption, signature creation and signature verification functions
— For these functions we define only their signatures and general axioms,
— because in order to reason effectively, we view them as abstract functions and
— abstract from their implementation details
consts

Enc :: Keys ⇒ Expression list ⇒ Expression list
Decr :: Keys ⇒ Expression list ⇒ Expression list
Sign :: Keys ⇒ Expression list ⇒ Expression list
Ext :: Keys ⇒ Expression list ⇒ Expression list

— Axioms on relations between encription and decription keys
axiomatization

EncrDecrKeys :: Keys ⇒ Keys ⇒ bool
where
ExtSign:
EncrDecrKeys K1 K2 −→ (Ext K1 (Sign K2 E)) = E and

4

DecrEnc:
EncrDecrKeys K1 K2 −→ (Decr K2 (Enc K1 E)) = E

— Set of private keys of a component
consts
specKeys :: specID ⇒ Keys set

— Set of unguessable values used by a component
consts
specSecrets :: specID ⇒ Secrets set

— Join set of private keys and unguessable values used by a component
definition

specKeysSecrets :: specID ⇒ KS set
where
specKeysSecrets C ≡
{y . ∃ x . y = (kKS x) ∧ (x ∈ (specKeys C))} ∪
{z . ∃ s. z = (sKS s) ∧ (s ∈ (specSecrets C))}

— Predicate defining that a list of expression items does not contain
— any private key or unguessable value used by a component
definition

notSpecKeysSecretsExpr :: specID ⇒ Expression list ⇒ bool
where

notSpecKeysSecretsExpr P e ≡
(∀ x . (kE x) mem e −→ (kKS x) /∈ specKeysSecrets P) ∧
(∀ y . (sE y) mem e −→ (sKS y) /∈ specKeysSecrets P)

— If a component is a composite one, the set of its private keys
— is a union of the subcomponents’ sets of the private keys
definition

correctCompositionKeys :: specID ⇒ bool
where

correctCompositionKeys x ≡
subcomponents x 6= {} −→
specKeys x =

⋃
(specKeys ‘ (subcomponents x))

— If a component is a composite one, the set of its unguessable values
— is a union of the subcomponents’ sets of the unguessable values
definition

correctCompositionSecrets :: specID ⇒ bool
where

correctCompositionSecrets x ≡
subcomponents x 6= {} −→
specSecrets x =

⋃
(specSecrets ‘ (subcomponents x))

— If a component is a composite one, the set of its private keys and
— unguessable values is a union of the corresponding sets of its subcomponents
definition

correctCompositionKS :: specID ⇒ bool

5

where
correctCompositionKS x ≡

subcomponents x 6= {} −→
specKeysSecrets x =

⋃
(specKeysSecrets ‘ (subcomponents x))

— Predicate defining set of correctness properties of the component’s
— interface and relations on its private keys and unguessable values
definition

correctComponentSecrecy :: specID ⇒ bool
where

correctComponentSecrecy x ≡
correctCompositionKS x ∧
correctCompositionSecrets x ∧
correctCompositionKeys x ∧
correctCompositionLoc x ∧
correctCompositionIn x ∧
correctCompositionOut x ∧
correctInOutLoc x

— Predicate exprChannel I E defines whether the expression item E can be sent
via the channel I
consts
exprChannel :: chanID ⇒ Expression ⇒ bool

— Predicate eoutM sP M E defines whether the component sP may eventually
— output an expression E if there exists a time interval t of
— an output channel which contains this expression E
definition

eout :: specID ⇒ Expression ⇒ bool
where
eout sP E ≡
∃ (ch :: chanID). ((ch ∈ (out sP)) ∧ (exprChannel ch E))

— Predicate eout sP E defines whether the component sP may eventually
— output an expression E via subset of channels M,
— which is a subset of output channels of sP,
— and if there exists a time interval t of
— an output channel which contains this expression E
definition

eoutM :: specID ⇒ chanID set ⇒ Expression ⇒ bool
where
eoutM sP M E ≡
∃ (ch :: chanID). ((ch ∈ (out sP)) ∧ (ch ∈ M) ∧ (exprChannel ch E))

— Predicate ineM sP M E defines whether a component sP may eventually
— get an expression E if there exists a time interval t of
— an input stream which contains this expression E
definition

ine :: specID ⇒ Expression ⇒ bool

6

where
ine sP E ≡
∃ (ch :: chanID). ((ch ∈ (ins sP)) ∧ (exprChannel ch E))

— Predicate ine sP E defines whether a component sP may eventually
— get an expression E via subset of channels M,
— which is a subset of input channels of sP,
— and if there exists a time interval t of
— an input stream which contains this expression E
definition

ineM :: specID ⇒ chanID set ⇒ Expression ⇒ bool
where
ineM sP M E ≡
∃ (ch :: chanID). ((ch ∈ (ins sP)) ∧ (ch ∈ M) ∧ (exprChannel ch E))

— This predicate defines whether an input channel ch of a component sP
— is the only one input channel of this component
— via which it may eventually output an expression E
definition

out-exprChannelSingle :: specID ⇒ chanID ⇒ Expression ⇒ bool
where
out-exprChannelSingle sP ch E ≡
(ch ∈ (out sP)) ∧
(exprChannel ch E) ∧
(∀ (x :: chanID) (t :: nat). ((x ∈ (out sP)) ∧ (x 6= ch) −→ ¬ exprChannel x E))

— This predicate yields true if only the channels from the set chSet,
— which is a subset of input channels of the component sP,
— may eventually output an expression E
definition
out-exprChannelSet :: specID ⇒ chanID set ⇒ Expression ⇒ bool

where
out-exprChannelSet sP chSet E ≡

((∀ (x ::chanID). ((x ∈ chSet) −→ ((x ∈ (out sP)) ∧ (exprChannel x E))))
∧
(∀ (x :: chanID). ((x /∈ chSet) ∧ (x ∈ (out sP)) −→ ¬ exprChannel x E)))

— This redicate defines whether
— an input channel ch of a component sP is the only one input channel
— of this component via which it may eventually get an expression E
definition
ine-exprChannelSingle :: specID ⇒ chanID ⇒ Expression ⇒ bool

where
ine-exprChannelSingle sP ch E ≡
(ch ∈ (ins sP)) ∧
(exprChannel ch E) ∧
(∀ (x :: chanID) (t :: nat). ((x ∈ (ins sP)) ∧ (x 6= ch) −→ ¬ exprChannel x

E))

7

— This predicate yields true if the component sP may eventually
— get an expression E only via the channels from the set chSet,
— which is a subset of input channels of sP
definition
ine-exprChannelSet :: specID ⇒ chanID set ⇒ Expression ⇒ bool

where
ine-exprChannelSet sP chSet E ≡

((∀ (x ::chanID). ((x ∈ chSet) −→ ((x ∈ (ins sP)) ∧ (exprChannel x E))))
∧
(∀ (x :: chanID). ((x /∈ chSet) ∧ (x ∈ (ins sP)) −→ ¬ exprChannel x E)))

— If a list of expression items does not contain any private key
— or unguessable value of a component P, then the first element
— of the list is neither a private key nor unguessable value of P
lemma notSpecKeysSecretsExpr-L1 :
assumes notSpecKeysSecretsExpr P (a # l)
shows notSpecKeysSecretsExpr P [a]
using assms by (simp add : notSpecKeysSecretsExpr-def)

— If a list of expression items does not contain any private key
— or unguessable value of a component P, then this list without its first
— element does not contain them too
lemma notSpecKeysSecretsExpr-L2 :
assumes notSpecKeysSecretsExpr P (a # l)
shows notSpecKeysSecretsExpr P l
using assms by (simp add : notSpecKeysSecretsExpr-def)

— If a channel belongs to the set of input channels of a component P
— and does not belong to the set of local channels of the compositon of P and Q
— then it belongs to the set of input channels of this composition
lemma correctCompositionIn-L1 :
assumes subcomponents PQ = {P ,Q}

and correctCompositionIn PQ
and ch /∈ loc PQ
and ch ∈ ins P

shows ch ∈ ins PQ
using assms by (simp add : correctCompositionIn-def)

— If a channel belongs to the set of input channels of the compositon of P and Q
— then it belongs to the set of input channels either of P or of Q
lemma correctCompositionIn-L2 :
assumes subcomponents PQ = {P ,Q}

and correctCompositionIn PQ
and ch ∈ ins PQ

shows (ch ∈ ins P) ∨ (ch ∈ ins Q)
using assms by (simp add : correctCompositionIn-def)

lemma ineM-L1 :
assumes ch ∈ M

8

and ch ∈ ins P
and exprChannel ch E

shows ineM P M E
using assms by (simp add : ineM-def , blast)

lemma ineM-ine:
assumes ineM P M E
shows ine P E
using assms by (simp add : ineM-def ine-def , blast)

lemma not-ine-ineM :
assumes ¬ ine P E
shows ¬ ineM P M E
using assms by (simp add : ineM-def ine-def)

lemma eoutM-eout :
assumes eoutM P M E
shows eout P E
using assms by (simp add : eoutM-def eout-def , blast)

lemma not-eout-eoutM :
assumes ¬ eout P E
shows ¬ eoutM P M E
using assms by (simp add : eoutM-def eout-def)

lemma correctCompositionKeys-subcomp1 :
assumes correctCompositionKeys C

and x ∈ subcomponents C
and xb ∈ specKeys C

shows ∃ x ∈ subcomponents C . (xb ∈ specKeys x)
using assms by (simp add : correctCompositionKeys-def , auto)

lemma correctCompositionSecrets-subcomp1 :
assumes correctCompositionSecrets C

and x ∈ subcomponents C
and s ∈ specSecrets C

shows ∃ x ∈ subcomponents C . (s ∈ specSecrets x)
using assms by (simp add : correctCompositionSecrets-def , auto)

lemma correctCompositionKeys-subcomp2 :
assumes correctCompositionKeys C

and xb ∈ subcomponents C
and xc ∈ specKeys xb

shows xc ∈ specKeys C
using assms by (simp add : correctCompositionKeys-def , auto)

lemma correctCompositionSecrets-subcomp2 :
assumes correctCompositionSecrets C

and xb ∈ subcomponents C

9

and xc ∈ specSecrets xb
shows xc ∈ specSecrets C
using assms by (simp add : correctCompositionSecrets-def , auto)

lemma correctCompKS-Keys:
assumes correctCompositionKS C
shows correctCompositionKeys C
proof (cases subcomponents C = {})

assume subcomponents C = {}
from this and assms show ?thesis
by (simp add : correctCompositionKeys-def)

next
assume subcomponents C 6= {}
from this and assms show ?thesis
by (simp add : correctCompositionKS-def

correctCompositionKeys-def
specKeysSecrets-def , blast)

qed

lemma correctCompKS-Secrets:
assumes correctCompositionKS C
shows correctCompositionSecrets C
proof (cases subcomponents C = {})

assume subcomponents C = {}
from this and assms show ?thesis
by (simp add : correctCompositionSecrets-def)

next
assume subcomponents C 6= {}
from this and assms show ?thesis
by (simp add : correctCompositionKS-def

correctCompositionSecrets-def
specKeysSecrets-def , blast)

qed

lemma correctCompKS-KeysSecrets:
assumes correctCompositionKeys C

and correctCompositionSecrets C
shows correctCompositionKS C
proof (cases subcomponents C = {})

assume subcomponents C = {}
from this and assms show ?thesis
by (simp add : correctCompositionKS-def)

next
assume subcomponents C 6= {}
from this and assms show ?thesis
by (simp add : correctCompositionKS-def

correctCompositionKeys-def
correctCompositionSecrets-def
specKeysSecrets-def , blast)

10

qed

lemma correctCompositionKS-subcomp1 :
assumes h1 :correctCompositionKS C

and h2 :x ∈ subcomponents C
and h3 :xa ∈ specKeys C

shows ∃ y ∈ subcomponents C . (xa ∈ specKeys y)
proof (cases subcomponents C = {})

assume subcomponents C = {}
from this and h2 show ?thesis by simp

next
assume subcomponents C 6= {}
from this and assms show ?thesis
by (simp add : correctCompositionKS-def specKeysSecrets-def , blast)

qed

lemma correctCompositionKS-subcomp2 :
assumes h1 :correctCompositionKS C

and h2 :x ∈ subcomponents C
and h3 :xa ∈ specSecrets C

shows ∃ y ∈ subcomponents C . xa ∈ specSecrets y
proof (cases subcomponents C = {})

assume subcomponents C = {}
from this and h2 show ?thesis by simp

next
assume subcomponents C 6= {}
from this and assms show ?thesis
by (simp add : correctCompositionKS-def specKeysSecrets-def , blast)

qed

lemma correctCompositionKS-subcomp3 :
assumes correctCompositionKS C

and x ∈ subcomponents C
and xa ∈ specKeys x

shows xa ∈ specKeys C
using assms
by (simp add : correctCompositionKS-def specKeysSecrets-def , auto)

lemma correctCompositionKS-subcomp4 :
assumes correctCompositionKS C

and x ∈ subcomponents C
and xa ∈ specSecrets x

shows xa ∈ specSecrets C
using assms
by (simp add : correctCompositionKS-def specKeysSecrets-def , auto)

lemma correctCompositionKS-PQ :
assumes subcomponents PQ = {P , Q}

and correctCompositionKS PQ

11

and ks ∈ specKeysSecrets PQ
shows ks ∈ specKeysSecrets P ∨ ks ∈ specKeysSecrets Q
using assms by (simp add : correctCompositionKS-def)

lemma correctCompositionKS-neg1 :
assumes subcomponents PQ = {P , Q}

and correctCompositionKS PQ
and ks /∈ specKeysSecrets P
and ks /∈ specKeysSecrets Q

shows ks /∈ specKeysSecrets PQ
using assms by (simp add : correctCompositionKS-def)

lemma correctCompositionKS-negP :
assumes subcomponents PQ = {P , Q}

and correctCompositionKS PQ
and ks /∈ specKeysSecrets PQ

shows ks /∈ specKeysSecrets P
using assms by (simp add : correctCompositionKS-def)

lemma correctCompositionKS-negQ :
assumes subcomponents PQ = {P , Q}

and correctCompositionKS PQ
and ks /∈ specKeysSecrets PQ

shows ks /∈ specKeysSecrets Q
using assms by (simp add : correctCompositionKS-def)

lemma out-exprChannelSingle-Set :
assumes out-exprChannelSingle P ch E
shows out-exprChannelSet P {ch} E
using assms
by (simp add : out-exprChannelSingle-def out-exprChannelSet-def)

lemma out-exprChannelSet-Single:
assumes out-exprChannelSet P {ch} E
shows out-exprChannelSingle P ch E
using assms
by (simp add : out-exprChannelSingle-def out-exprChannelSet-def)

lemma ine-exprChannelSingle-Set :
assumes ine-exprChannelSingle P ch E

shows ine-exprChannelSet P {ch} E
using assms
by (simp add : ine-exprChannelSingle-def ine-exprChannelSet-def)

lemma ine-exprChannelSet-Single:
assumes ine-exprChannelSet P {ch} E
shows ine-exprChannelSingle P ch E
using assms
by (simp add : ine-exprChannelSingle-def ine-exprChannelSet-def)

12

lemma ine-ins-neg1 :
assumes ¬ ine P m

and exprChannel x m
shows x /∈ ins P
using assms by (simp add : ine-def , auto)

theorem TBtheorem1a:
assumes ine PQ E

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ

shows ine P E ∨ ine Q E
using assms by (simp add : ine-def correctCompositionIn-def , auto)

theorem TBtheorem1b:
assumes ineM PQ M E

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ

shows ineM P M E ∨ ineM Q M E
using assms by (simp add : ineM-def correctCompositionIn-def , auto)

theorem TBtheorem2a:
assumes eout PQ E

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ

shows eout P E ∨ eout Q E
using assms by (simp add : eout-def correctCompositionOut-def , auto)

theorem TBtheorem2b:
assumes eoutM PQ M E

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ

shows eoutM P M E ∨ eoutM Q M E
using assms by (simp add : eoutM-def correctCompositionOut-def , auto)

lemma correctCompositionIn-prop1 :
assumes subcomponents PQ = {P ,Q}

and correctCompositionIn PQ
and x ∈ (ins PQ)

shows (x ∈ (ins P)) ∨ (x ∈ (ins Q))
using assms by (simp add : correctCompositionIn-def)

lemma correctCompositionOut-prop1 :
assumes subcomponents PQ = {P ,Q}

and correctCompositionOut PQ
and x ∈ (out PQ)

shows (x ∈ (out P)) ∨ (x ∈ (out Q))
using assms by (simp add : correctCompositionOut-def)

13

theorem TBtheorem3a:
assumes ¬ (ine P E)

and ¬ (ine Q E)
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ

shows ¬ (ine PQ E)
using assms by (simp add : ine-def correctCompositionIn-def , auto)

theorem TBlemma3b:
assumes h1 :¬ (ineM P M E)

and h2 :¬ (ineM Q M E)
and h3 :subcomponents PQ = {P ,Q}
and h4 :correctCompositionIn PQ
and h5 :ch ∈ M
and h6 :ch ∈ ins PQ
and h7 :exprChannel ch E

shows False
proof (cases ch ∈ ins P)

assume a1 :ch ∈ ins P
from a1 and h5 and h7 have ineM P M E by (simp add : ineM-L1)
from this and h1 show ?thesis by simp

next
assume a2 :ch /∈ ins P
from h3 and h4 and h6 have (ch ∈ ins P) ∨ (ch ∈ ins Q)

by (simp add : correctCompositionIn-L2)
from this and a2 have ch ∈ ins Q by simp
from this and h5 and h7 have ineM Q M E by (simp add : ineM-L1)
from this and h2 show ?thesis by simp

qed

theorem TBtheorem3b:
assumes h1 :¬ (ineM P M E)

and h2 :¬ (ineM Q M E)
and h3 :subcomponents PQ = {P ,Q}
and h4 :correctCompositionIn PQ

shows ¬ (ineM PQ M E)
using assms by (metis TBtheorem1b)

theorem TBtheorem4a-empty :
assumes (ine P E) ∨ (ine Q E)

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and loc PQ = {}

shows ine PQ E
using assms by (simp add : ine-def correctCompositionIn-def , auto)

theorem TBtheorem4a-P :
assumes ine P E

and subcomponents PQ = {P ,Q}

14

and correctCompositionIn PQ
and ∃ ch. (ch ∈ (ins P) ∧ exprChannel ch E ∧ ch /∈ (loc PQ))

shows ine PQ E
using assms by (simp add : ine-def correctCompositionIn-def , auto)

theorem TBtheorem4b-P :
assumes ineM P M E

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and ∃ ch. ((ch ∈ (ins Q)) ∧ (exprChannel ch E) ∧

(ch /∈ (loc PQ)) ∧ (ch ∈ M))
shows ineM PQ M E
using assms by (simp add : ineM-def correctCompositionIn-def , auto)

theorem TBtheorem4a-PQ :
assumes (ine P E) ∨ (ine Q E)

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and ∃ ch. (((ch ∈ (ins P)) ∨ (ch ∈ (ins Q))) ∧

(exprChannel ch E) ∧ (ch /∈ (loc PQ)))
shows ine PQ E
using assms by (simp add : ine-def correctCompositionIn-def , auto)

theorem TBtheorem4b-PQ :
assumes (ineM P M E) ∨ (ineM Q M E)

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and ∃ ch. (((ch ∈ (ins P)) ∨ (ch ∈ (ins Q))) ∧

(ch ∈ M) ∧ (exprChannel ch E) ∧ (ch /∈ (loc PQ)))
shows ineM PQ M E
using assms by (simp add : ineM-def correctCompositionIn-def , auto)

theorem TBtheorem4a-notP1 :
assumes ine P E

and ¬ ine Q E
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and ∃ ch. ((ine-exprChannelSingle P ch E) ∧ (ch ∈ (loc PQ)))

shows ¬ ine PQ E
using assms
by (simp add : ine-def correctCompositionIn-def

ine-exprChannelSingle-def , auto)

theorem TBtheorem4b-notP1 :
assumes ineM P M E

and ¬ ineM Q M E
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and ∃ ch. ((ine-exprChannelSingle P ch E) ∧ (ch ∈ M)

15

∧ (ch ∈ (loc PQ)))
shows ¬ ineM PQ M E
using assms
by (simp add : ineM-def correctCompositionIn-def

ine-exprChannelSingle-def , auto)

theorem TBtheorem4a-notP2 :
assumes ¬ ine Q E

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and ine-exprChannelSet P ChSet E
and ∀ (x ::chanID). ((x ∈ ChSet) −→ (x ∈ (loc PQ)))

shows ¬ ine PQ E
using assms
by (simp add : ine-def correctCompositionIn-def

ine-exprChannelSet-def , auto)

theorem TBtheorem4b-notP2 :
assumes ¬ ineM Q M E

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and ine-exprChannelSet P ChSet E
and ∀ (x ::chanID). ((x ∈ ChSet) −→ (x ∈ (loc PQ)))

shows ¬ ineM PQ M E
using assms
by (simp add : ineM-def correctCompositionIn-def

ine-exprChannelSet-def , auto)

theorem TBtheorem4a-notPQ :
assumes subcomponents PQ = {P ,Q}

and correctCompositionIn PQ
and ine-exprChannelSet P ChSetP E
and ine-exprChannelSet Q ChSetQ E
and ∀ (x ::chanID). ((x ∈ ChSetP) −→ (x ∈ (loc PQ)))
and ∀ (x ::chanID). ((x ∈ ChSetQ) −→ (x ∈ (loc PQ)))

shows ¬ ine PQ E
using assms
by (simp add : ine-def correctCompositionIn-def

ine-exprChannelSet-def , auto)

lemma ineM-Un1 :
assumes ineM P A E
shows ineM P (A Un B) E
using assms by (simp add : ineM-def , auto)

theorem TBtheorem4b-notPQ :
assumes subcomponents PQ = {P ,Q}

and correctCompositionIn PQ
and ine-exprChannelSet P ChSetP E

16

and ine-exprChannelSet Q ChSetQ E
and ∀ (x ::chanID). ((x ∈ ChSetP) −→ (x ∈ (loc PQ)))
and ∀ (x ::chanID). ((x ∈ ChSetQ) −→ (x ∈ (loc PQ)))

shows ¬ ineM PQ M E
using assms
by (simp add : ineM-def correctCompositionIn-def

ine-exprChannelSet-def , auto)

lemma ine-nonempty-exprChannelSet :
assumes ine-exprChannelSet P ChSet E

and ChSet 6= {}
shows ine P E
using assms by (simp add : ine-def ine-exprChannelSet-def , auto)

lemma ine-empty-exprChannelSet :
assumes ine-exprChannelSet P ChSet E

and ChSet = {}
shows ¬ ine P E
using assms by (simp add : ine-def ine-exprChannelSet-def)

theorem TBtheorem5a-empty :
assumes (eout P E) ∨ (eout Q E)

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and loc PQ = {}

shows eout PQ E
using assms by (simp add : eout-def correctCompositionOut-def , auto)

theorem TBtheorem45a-P :
assumes eout P E

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and ∃ ch. ((ch ∈ (out P)) ∧ (exprChannel ch E) ∧

(ch /∈ (loc PQ)))
shows eout PQ E
using assms by (simp add : eout-def correctCompositionOut-def , auto)

theorem TBtheore54b-P :
assumes eoutM P M E

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and ∃ ch. ((ch ∈ (out Q)) ∧ (exprChannel ch E) ∧

(ch /∈ (loc PQ)) ∧ (ch ∈ M))
shows eoutM PQ M E
using assms by (simp add : eoutM-def correctCompositionOut-def , auto)

theorem TBtheorem5a-PQ :
assumes (eout P E) ∨ (eout Q E)

and subcomponents PQ = {P ,Q}

17

and correctCompositionOut PQ
and ∃ ch. (((ch ∈ (out P)) ∨ (ch ∈ (out Q))) ∧

(exprChannel ch E) ∧ (ch /∈ (loc PQ)))
shows eout PQ E
using assms by (simp add : eout-def correctCompositionOut-def , auto)

theorem TBtheorem5b-PQ :
assumes (eoutM P M E) ∨ (eoutM Q M E)

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and ∃ ch. (((ch ∈ (out P)) ∨ (ch ∈ (out Q))) ∧ (ch ∈ M)

∧ (exprChannel ch E) ∧ (ch /∈ (loc PQ)))
shows eoutM PQ M E
using assms by (simp add : eoutM-def correctCompositionOut-def , auto)

theorem TBtheorem5a-notP1 :
assumes eout P E

and ¬ eout Q E
and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and ∃ ch. ((out-exprChannelSingle P ch E) ∧ (ch ∈ (loc PQ)))

shows ¬ eout PQ E
using assms
by (simp add : eout-def correctCompositionOut-def

out-exprChannelSingle-def , auto)

theorem TBtheorem5b-notP1 :
assumes eoutM P M E

and ¬ eoutM Q M E
and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and ∃ ch. ((out-exprChannelSingle P ch E) ∧ (ch ∈ M)

∧ (ch ∈ (loc PQ)))
shows ¬ eoutM PQ M E
using assms
by (simp add : eoutM-def correctCompositionOut-def

out-exprChannelSingle-def , auto)

theorem TBtheorem5a-notP2 :
assumes ¬ eout Q E

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and out-exprChannelSet P ChSet E
and ∀ (x ::chanID). ((x ∈ ChSet) −→ (x ∈ (loc PQ)))

shows ¬ eout PQ E
using assms
by (simp add : eout-def correctCompositionOut-def

out-exprChannelSet-def , auto)

18

theorem TBtheorem5b-notP2 :
assumes ¬ eoutM Q M E

and subcomponents PQ = {P ,Q}
and correctCompositionOut PQ
and out-exprChannelSet P ChSet E
and ∀ (x ::chanID). ((x ∈ ChSet) −→ (x ∈ (loc PQ)))

shows ¬ eoutM PQ M E
using assms
by (simp add : eoutM-def correctCompositionOut-def

out-exprChannelSet-def , auto)

theorem TBtheorem5a-notPQ :
assumes subcomponents PQ = {P ,Q}

and correctCompositionOut PQ
and out-exprChannelSet P ChSetP E
and out-exprChannelSet Q ChSetQ E
and ∀ (x ::chanID). ((x ∈ ChSetP) −→ (x ∈ (loc PQ)))
and ∀ (x ::chanID). ((x ∈ ChSetQ) −→ (x ∈ (loc PQ)))

shows ¬ eout PQ E
using assms
by (simp add : eout-def correctCompositionOut-def

out-exprChannelSet-def , auto)

theorem TBtheorem5b-notPQ :
assumes subcomponents PQ = {P ,Q}

and correctCompositionOut PQ
and out-exprChannelSet P ChSetP E
and out-exprChannelSet Q ChSetQ E
and M = ChSetP ∪ ChSetQ
and ∀ (x ::chanID). ((x ∈ ChSetP) −→ (x ∈ (loc PQ)))
and ∀ (x ::chanID). ((x ∈ ChSetQ) −→ (x ∈ (loc PQ)))

shows ¬ eoutM PQ M E
using assms
by (simp add : eoutM-def correctCompositionOut-def

out-exprChannelSet-def , auto)

end

4 Local Secrets of a component

theory CompLocalSecrets
imports Secrecy
begin

— Set of local secrets: the set of secrets which does not belong to
— the set of private keys and unguessable values, but are transmitted
— via local channels or belongs to the local secrets of its subcomponents
axiomatization

LocalSecrets :: specID ⇒ KS set

19

where
LocalSecretsDef :
LocalSecrets A =
{(m :: KS). m /∈ specKeysSecrets A ∧

((∃ x y . ((x ∈ loc A) ∧ m = (kKS y) ∧ (exprChannel x (kE y))))
|(∃ x z . ((x ∈ loc A) ∧ m = (sKS z) ∧ (exprChannel x (sE z)))))}

∪ (
⋃

(LocalSecrets ‘ (subcomponents A)))

lemma LocalSecretsComposition1 :
assumes ls ∈ LocalSecrets P

and subcomponents PQ = {P , Q}
shows ls ∈ LocalSecrets PQ
using assms by (simp (no-asm) only : LocalSecretsDef , auto)

lemma LocalSecretsComposition-exprChannel-k :
assumes exprChannel x (kE Keys)

and ¬ ine P (kE Keys)
and ¬ ine Q (kE Keys)
and ¬ (x /∈ ins P ∧ x /∈ ins Q)

shows False
using assms by (metis ine-def)

lemma LocalSecretsComposition-exprChannel-s:
assumes exprChannel x (sE Secrets)

and ¬ ine P (sE Secrets)
and ¬ ine Q (sE Secrets)
and ¬ (x /∈ ins P ∧ x /∈ ins Q)

shows False
using assms by (metis ine-ins-neg1)

lemma LocalSecretsComposition-neg1-k :
assumes subcomponents PQ = {P , Q}

and correctCompositionLoc PQ
and ¬ ine P (kE Keys)
and ¬ ine Q (kE Keys)
and kKS Keys /∈ LocalSecrets P
and kKS Keys /∈ LocalSecrets Q

shows kKS Keys /∈ LocalSecrets PQ
proof −

from assms show ?thesis
apply (simp (no-asm) only : LocalSecretsDef ,

simp add : correctCompositionLoc-def , clarify)
by (rule LocalSecretsComposition-exprChannel-k , auto)

qed

lemma LocalSecretsComposition-neg-k :
assumes subcomponents PQ = {P ,Q}

and correctCompositionLoc PQ
and correctCompositionKS PQ

20

and (kKS m) /∈ specKeysSecrets P
and (kKS m) /∈ specKeysSecrets Q
and ¬ ine P (kE m)
and ¬ ine Q (kE m)
and (kKS m) /∈ ((LocalSecrets P) ∪ (LocalSecrets Q))

shows (kKS m) /∈ (LocalSecrets PQ)
proof −

from assms show ?thesis
apply (simp (no-asm) only : LocalSecretsDef ,

simp add : correctCompositionLoc-def , clarify)
by (rule LocalSecretsComposition-exprChannel-k , auto)

qed

lemma LocalSecretsComposition-neg-s:
assumes h1 :subcomponents PQ = {P ,Q}

and h2 :correctCompositionLoc PQ
and h3 :correctCompositionKS PQ
and h4 :(sKS m) /∈ specKeysSecrets P
and h5 :(sKS m) /∈ specKeysSecrets Q
and h6 :¬ ine P (sE m)
and h7 :¬ ine Q (sE m)
and h8 :(sKS m) /∈ ((LocalSecrets P) ∪ (LocalSecrets Q))

shows (sKS m) /∈ (LocalSecrets PQ)
proof −

from h1 and h3 and h4 and h5 have sg1 :sKS m /∈ specKeysSecrets PQ
by (simp add : correctCompositionKS-neg1)

from h1 and h2 and h8 have sg2 :
sKS m /∈

⋃
(LocalSecrets ‘ subcomponents PQ)

by simp
from sg1 and sg2 and assms show ?thesis

apply (simp (no-asm) only : LocalSecretsDef ,
simp add : correctCompositionLoc-def , clarify)

by (rule LocalSecretsComposition-exprChannel-s, auto)
qed

lemma LocalSecretsComposition-neg :
assumes h1 :subcomponents PQ = {P ,Q}

and h2 :correctCompositionLoc PQ
and h3 :correctCompositionKS PQ
and h4 :ks /∈ specKeysSecrets P
and h5 :ks /∈ specKeysSecrets Q
and h6 :∀ m. ks = kKS m −→ (¬ ine P (kE m) ∧ ¬ ine Q (kE m))
and h7 :∀ m. ks = sKS m −→ (¬ ine P (sE m) ∧ ¬ ine Q (sE m))
and h8 :ks /∈ ((LocalSecrets P) ∪ (LocalSecrets Q))

shows ks /∈ (LocalSecrets PQ)
proof (cases ks)

fix m
assume a1 :ks = kKS m
from this and h6 have ¬ ine P (kE m) ∧ ¬ ine Q (kE m) by simp

21

from this and a1 and assms show ?thesis
by (simp add : LocalSecretsComposition-neg-k)

next
fix m
assume a2 :ks = sKS m
from this and h7 have ¬ ine P (sE m) ∧ ¬ ine Q (sE m) by simp
from this and a2 and assms show ?thesis

by (simp add : LocalSecretsComposition-neg-s)
qed

lemma LocalSecretsComposition-neg1-s:
assumes subcomponents PQ = {P , Q}

and correctCompositionLoc PQ
and ¬ ine P (sE s)
and ¬ ine Q (sE s)
and sKS s /∈ LocalSecrets P
and sKS s /∈ LocalSecrets Q

shows sKS s /∈ LocalSecrets PQ
proof −

from assms have
sKS s /∈

⋃
(LocalSecrets ‘ subcomponents PQ)

by simp
from assms and this show ?thesis
apply (simp (no-asm) only : LocalSecretsDef ,

simp add : correctCompositionLoc-def , clarify)
by (rule LocalSecretsComposition-exprChannel-s, auto)

qed

lemma LocalSecretsComposition-neg1 :
assumes h1 :subcomponents PQ = {P , Q}

and h2 :correctCompositionLoc PQ
and h3 :∀ m. ks = kKS m −→ (¬ ine P (kE m) ∧ ¬ ine Q (kE m))
and h4 :∀ m. ks = sKS m −→ (¬ ine P (sE m) ∧ ¬ ine Q (sE m))
and h5 :ks /∈ LocalSecrets P
and h6 :ks /∈ LocalSecrets Q

shows ks /∈ LocalSecrets PQ
proof (cases ks)

fix m
assume a1 :ks = kKS m
from this and h3 have ¬ ine P (kE m) ∧ ¬ ine Q (kE m) by simp
from this and a1 and assms show ?thesis

by (simp add : LocalSecretsComposition-neg1-k)
next

fix m
assume a2 :ks = sKS m
from this and h4 have ¬ ine P (sE m) ∧ ¬ ine Q (sE m) by simp
from this and a2 and assms show ?thesis

by (simp add : LocalSecretsComposition-neg1-s)
qed

22

lemma LocalSecretsComposition-ine1-k :
assumes kKS k ∈ LocalSecrets PQ

and subcomponents PQ = {P , Q}
and correctCompositionLoc PQ
and ¬ ine Q (kE k)
and kKS k /∈ LocalSecrets P
and kKS k /∈ LocalSecrets Q

shows ine P (kE k)
using assms by (metis LocalSecretsComposition-neg1-k)

lemma LocalSecretsComposition-ine1-s:
assumes sKS s ∈ LocalSecrets PQ

and subcomponents PQ = {P , Q}
and correctCompositionLoc PQ
and ¬ ine Q (sE s)
and sKS s /∈ LocalSecrets P
and sKS s /∈ LocalSecrets Q

shows ine P (sE s)
using assms by (metis LocalSecretsComposition-neg1-s)

lemma LocalSecretsComposition-ine2-k :
assumes kKS k ∈ LocalSecrets PQ

and subcomponents PQ = {P , Q}
and correctCompositionLoc PQ
and ¬ ine P (kE k)
and kKS k /∈ LocalSecrets P
and kKS k /∈ LocalSecrets Q

shows ine Q (kE k)
using assms by (metis LocalSecretsComposition-ine1-k)

lemma LocalSecretsComposition-ine2-s:
assumes h1 :sKS s ∈ LocalSecrets PQ

and h2 :subcomponents PQ = {P , Q}
and h3 :correctCompositionLoc PQ
and h4 :¬ ine P (sE s)
and h5 :sKS s /∈ LocalSecrets P
and h6 :sKS s /∈ LocalSecrets Q

shows ine Q (sE s)
using assms by (metis LocalSecretsComposition-ine1-s)

lemma LocalSecretsComposition-neg-loc-k :
assumes h1 :kKS key /∈ LocalSecrets P

and h2 :exprChannel ch (kE key)
and h3 :kKS key /∈ specKeysSecrets P

shows ch /∈ loc P
using assms by (simp only : LocalSecretsDef , auto)

lemma LocalSecretsComposition-neg-loc-s:

23

assumes h1 :sKS secret /∈ LocalSecrets P
and h2 :exprChannel ch (sE secret)
and h3 :sKS secret /∈ specKeysSecrets P

shows ch /∈ loc P
using assms by (simp only : LocalSecretsDef , auto)

lemma correctCompositionKS-exprChannel-k-P :
assumes subcomponents PQ = {P ,Q}

and correctCompositionKS PQ
and kKS key /∈ LocalSecrets PQ
and ch ∈ ins P
and exprChannel ch (kE key)
and kKS key /∈ specKeysSecrets PQ
and correctCompositionIn PQ

shows ch ∈ ins PQ ∧ exprChannel ch (kE key)
using assms
by (metis LocalSecretsComposition-neg-loc-k correctCompositionIn-L1)

lemma correctCompositionKS-exprChannel-k-Pex :
assumes subcomponents PQ = {P ,Q}

and correctCompositionKS PQ
and kKS key /∈ LocalSecrets PQ
and ch ∈ ins P
and exprChannel ch (kE key)
and kKS key /∈ specKeysSecrets PQ
and correctCompositionIn PQ

shows ∃ ch. ch ∈ ins PQ ∧ exprChannel ch (kE key)
using assms
by (metis correctCompositionKS-exprChannel-k-P)

lemma correctCompositionKS-exprChannel-k-Q :
assumes h1 :subcomponents PQ = {P ,Q}

and h2 :correctCompositionKS PQ
and h3 :kKS key /∈ LocalSecrets PQ
and h4 :ch ∈ ins Q
and h5 :exprChannel ch (kE key)
and h6 :kKS key /∈ specKeysSecrets PQ
and h7 :correctCompositionIn PQ

shows ch ∈ ins PQ ∧ exprChannel ch (kE key)
proof −

from assms have ch /∈ loc PQ
by (simp add : LocalSecretsComposition-neg-loc-k)

from this and assms have ch ∈ ins PQ
by (simp add : correctCompositionIn-def)

from this and h5 show ?thesis by simp
qed

lemma correctCompositionKS-exprChannel-k-Qex :
assumes subcomponents PQ = {P ,Q}

24

and correctCompositionKS PQ
and kKS key /∈ LocalSecrets PQ
and ch ∈ ins Q
and exprChannel ch (kE key)
and kKS key /∈ specKeysSecrets PQ
and correctCompositionIn PQ

shows ∃ ch. ch ∈ ins PQ ∧ exprChannel ch (kE key)
using assms
by (metis correctCompositionKS-exprChannel-k-Q)

lemma correctCompositionKS-exprChannel-s-P :
assumes subcomponents PQ = {P ,Q}

and correctCompositionKS PQ
and sKS secret /∈ LocalSecrets PQ
and ch ∈ ins P
and exprChannel ch (sE secret)
and sKS secret /∈ specKeysSecrets PQ
and correctCompositionIn PQ

shows ch ∈ ins PQ ∧ exprChannel ch (sE secret)
using assms
by (metis LocalSecretsComposition-neg-loc-s correctCompositionIn-L1)

lemma correctCompositionKS-exprChannel-s-Pex :
assumes subcomponents PQ = {P ,Q}

and correctCompositionKS PQ
and sKS secret /∈ LocalSecrets PQ
and ch ∈ ins P
and exprChannel ch (sE secret)
and sKS secret /∈ specKeysSecrets PQ
and correctCompositionIn PQ

shows ∃ ch. ch ∈ ins PQ ∧ exprChannel ch (sE secret)
using assms
by (metis correctCompositionKS-exprChannel-s-P)

lemma correctCompositionKS-exprChannel-s-Q :
assumes h1 :subcomponents PQ = {P ,Q}

and h2 :correctCompositionKS PQ
and h3 :sKS secret /∈ LocalSecrets PQ
and h4 :ch ∈ ins Q
and h5 :exprChannel ch (sE secret)
and h6 :sKS secret /∈ specKeysSecrets PQ
and h7 :correctCompositionIn PQ

shows ch ∈ ins PQ ∧ exprChannel ch (sE secret)
proof −

from assms have ch /∈ loc PQ
by (simp add : LocalSecretsComposition-neg-loc-s)

from this and assms have ch ∈ ins PQ
by (simp add : correctCompositionIn-def)

from this and h5 show ?thesis by simp

25

qed

lemma correctCompositionKS-exprChannel-s-Qex :
assumes subcomponents PQ = {P ,Q}

and correctCompositionKS PQ
and sKS secret /∈ LocalSecrets PQ
and ch ∈ ins Q
and exprChannel ch (sE secret)
and sKS secret /∈ specKeysSecrets PQ
and correctCompositionIn PQ

shows ∃ ch. ch ∈ ins PQ ∧ exprChannel ch (sE secret)
using assms
by (metis correctCompositionKS-exprChannel-s-Q)

end

5 Knowledge of Keys and Secrets

theory KnowledgeKeysSecrets
imports CompLocalSecrets
begin
An component A knows a secret m (or some secret expression m) that does not
belong to its local sectrets , if

• A may eventually get the secret m,

• m belongs to the set LSA of its local secrets,

• A knows some list of expressions m2 which is an concatenations of m and
some list of expressions m1,

• m is a concatenation of some lists of secrets m1 and m2, and A knows both
these secrets,

• A knows some secret key k−1 and the result of the encryption of the m with
the corresponding public key,

• A knows some public key k and the result of the signature creation of the m
with the corresponding private key,

• m is an encryption of some secret m1 with a public key k, and A knows both
m1 and k,

• m is the result of the signature creation of the m1 with the key k, and A
knows both m1 and k.

primrec
know :: specID ⇒ KS ⇒ bool

where
know A (kKS m) =
((ine A (kE m)) ∨ ((kKS m) ∈ (LocalSecrets A))) |

know A (sKS m) =
((ine A (sE m)) ∨ ((sKS m) ∈ (LocalSecrets A)))

26

axiomatization
knows :: specID ⇒ Expression list ⇒ bool

where
knows-emptyexpression:

knows C [] = True and
know1k :

knows C [KS2Expression (kKS m1)] = know C (kKS m1) and
know1s:

knows C [KS2Expression (sKS m2)] = know C (sKS m2) and
knows2a:

knows A (e1 @ e) −→ knows A e and
knows2b:

knows A (e @ e1) −→ knows A e and
knows3 :

(knows A e1) ∧ (knows A e2) −→ knows A (e1 @ e2) and
knows4 :

(IncrDecrKeys k1 k2) ∧ (know A (kKS k2)) ∧ (knows A (Enc k1 e))
−→ knows A e

and
knows5 :

(IncrDecrKeys k1 k2) ∧ (know A (kKS k1)) ∧ (knows A (Sign k2 e))
−→ knows A e

and
knows6 :

(know A (kKS k)) ∧ (knows A e1) −→ knows A (Enc k e1)
and
knows7 :

(know A (kKS k)) ∧ (knows A e1) −→ knows A (Sign k e1)

primrec eoutKnowCorrect :: specID ⇒ KS ⇒ bool
where
eout-know-k :

eoutKnowCorrect C (kKS m) =
((eout C (kE m)) ←→ (m ∈ (specKeys C) ∨ (know C (kKS m)))) |

eout-know-s:
eoutKnowCorrect C (sKS m) =

((eout C (sE m)) ←→ (m ∈ (specSecrets C) ∨ (know C (sKS m))))

definition eoutKnowsECorrect :: specID ⇒ Expression ⇒ bool
where

eoutKnowsECorrect C e ≡
((eout C e) ←→
((∃ k . e = (kE k) ∧ (k ∈ specKeys C)) ∨
(∃ s. e = (sE s) ∧ (s ∈ specSecrets C)) ∨
(knows C [e])))

lemma eoutKnowCorrect-L1k :
assumes eoutKnowCorrect C (kKS m)

and eout C (kE m)

27

shows m ∈ (specKeys C) ∨ (know C (kKS m))
using assms by (metis eout-know-k)

lemma eoutKnowCorrect-L1s:
assumes eoutKnowCorrect C (sKS m)

and eout C (sE m)
shows m ∈ (specSecrets C) ∨ (know C (sKS m))
using assms by (metis eout-know-s)

lemma eoutKnowsECorrect-L1 :
assumes eoutKnowsECorrect C e

and eout C e
shows (∃ k . e = (kE k) ∧ (k ∈ specKeys C)) ∨

(∃ s. e = (sE s) ∧ (s ∈ specSecrets C)) ∨
(knows C [e])

using assms by (metis eoutKnowsECorrect-def)

lemma know2knows-k :
assumes know A (kKS m)
shows knows A [kE m]
proof −

from assms have sg1 :KS2Expression (kKS m) = kE m by simp
from assms have sg2 : knows A [KS2Expression (kKS m)]

by (simp only : know1k)
from sg2 and sg1 show ?thesis by simp

qed

lemma knows2know-k :
assumes knows A [kE m]
shows know A (kKS m)
using assms
proof −

from assms have kE m = KS2Expression (kKS m) by simp
from assms and this show ?thesis by (simp only : know1k)

qed

lemma know2knowsPQ-k :
assumes know P (kKS m) ∨ know Q (kKS m)
shows knows P [kE m] ∨ knows Q [kE m]
using assms by (metis know2knows-k)

lemma knows2knowPQ-k :
assumes knows P [kE m] ∨ knows Q [kE m]
shows know P (kKS m) ∨ know Q (kKS m)
using assms by (metis knows2know-k)

lemma knows1k :
know A (kKS m) = knows A [kE m]

by (metis know2knows-k knows2know-k)

28

lemma know2knows-neg-k :
assumes ¬ know A (kKS m)
shows ¬ knows A [kE m]
using assms by (metis knows1k)

lemma knows2know-neg-k :
assumes ¬ knows A [kE m]
shows ¬ know A (kKS m)
using assms by (metis know2knowsPQ-k)

lemma know2knows-s:
assumes know A (sKS m)
shows knows A [sE m]
using assms
by (metis KS2Expression.simps(2) know1s)

lemma knows2know-s:
assumes knows A [sE m]
shows know A (sKS m)
using assms
by (metis KS2Expression.simps(2) know1s)

lemma know2knowsPQ-s:
assumes know P (sKS m) ∨ know Q (sKS m)
shows knows P [sE m] ∨ knows Q [sE m]
using assms by (metis know2knows-s)

lemma knows2knowPQ-s:
assumes knows P [sE m] ∨ knows Q [sE m]
shows know P (sKS m) ∨ know Q (sKS m)
using assms by (metis knows2know-s)

lemma knows1s:
know A (sKS m) = knows A [sE m]

by (metis know2knows-s knows2know-s)

lemma know2knows-neg-s:
assumes ¬ know A (sKS m)
shows ¬ knows A [sE m]
using assms by (metis knows2know-s)

lemma knows2know-neg-s:
assumes ¬ knows A [sE m]
shows ¬ know A (sKS m)
using assms by (metis know2knows-s)

lemma knows2 :
assumes e2 = e1 @ e ∨ e2 = e @ e1

29

and knows A e2
shows knows A e
using assms by (metis knows2a knows2b)

lemma correctCompositionInLoc-exprChannel :
assumes subcomponents PQ = {P , Q}

and correctCompositionIn PQ
and ch : ins P
and exprChannel ch m
and ∀ x . x ∈ ins PQ −→ ¬ exprChannel x m

shows ch : loc PQ
using assms by (simp add : correctCompositionIn-def , auto)

lemma eout-know-nonKS-k :
assumes m /∈ specKeys A

and eout A (kE m)
and eoutKnowCorrect A (kKS m)

shows know A (kKS m)
using assms by (metis eoutKnowCorrect-L1k)

lemma eout-know-nonKS-s:
assumes m /∈ specSecrets A

and eout A (sE m)
and eoutKnowCorrect A (sKS m)

shows know A (sKS m)
using assms by (metis eoutKnowCorrect-L1s)

lemma not-know-k-not-ine:
assumes ¬ know A (kKS m)
shows ¬ ine A (kE m)
using assms by simp

lemma not-know-s-not-ine:
assumes ¬ know A (sKS m)
shows ¬ ine A (sE m)
using assms by simp

lemma not-know-k-not-eout :
assumes m /∈ specKeys A

and ¬ know A (kKS m)
and eoutKnowCorrect A (kKS m)

shows ¬ eout A (kE m)
using assms by (metis eout-know-k)

lemma not-know-s-not-eout :
assumes m /∈ specSecrets A

and ¬ know A (sKS m)
and eoutKnowCorrect A (sKS m)

shows ¬ eout A (sE m)

30

using assms by (metis eout-know-nonKS-s)

lemma adv-not-know1 :
assumes h1 :out P ⊆ ins A

and h2 :¬ know A (kKS m)
shows ¬ eout P (kE m)
proof −

from h2 have ¬ ine A (kE m) by (simp add : not-know-k-not-ine)
from this and h1 show ?thesis by (simp add : ine-def eout-def , auto)

qed

lemma adv-not-know2 :
assumes h1 :out P ⊆ ins A

and h2 :¬ know A (sKS m)
shows ¬ eout P (sE m)
proof −

from h2 have ¬ ine A (sE m) by (simp add : not-know-s-not-ine)
from this and h1 show ?thesis by (simp add : ine-def eout-def , auto)

qed

lemma LocalSecrets-L1 :
assumes (kKS) key ∈ LocalSecrets P

and (kKS key) /∈
⋃

(LocalSecrets ‘ subcomponents P)
shows kKS key /∈ specKeysSecrets P
using assms by (simp only : LocalSecretsDef , auto)

lemma LocalSecrets-L2 :
assumes kKS key ∈ LocalSecrets P

and kKS key ∈ specKeysSecrets P
shows kKS key ∈

⋃
(LocalSecrets ‘ subcomponents P)

using assms by (simp only : LocalSecretsDef , auto)

lemma know-composition1 :
assumes h1 :m /∈ specKeysSecrets P

and h2 :m /∈ specKeysSecrets Q
and h3 :know P m
and h4 :subcomponents PQ = {P ,Q}
and h5 :correctCompositionIn PQ
and h6 :correctCompositionKS PQ

shows know PQ m
proof (cases m)

fix key
assume a1 :m = kKS key
show ?thesis
proof (cases ine P (kE key))

assume a11 :ine P (kE key)
from this have a11ext :ine P (kE key) | ine Q (kE key) by simp
from h4 and h6 and h1 and h2 have m /∈ specKeysSecrets PQ

by (rule correctCompositionKS-neg1)

31

from this and a1 have sg1 :kKS key /∈ specKeysSecrets PQ by simp
from a1 and a11ext and h6 show ?thesis
proof (cases loc PQ = {})

assume a11locE :loc PQ = {}
from a11ext and h4 and h5 and a11locE have ine PQ (kE key)

by (rule TBtheorem4a-empty)
from this and a1 show ?thesis by auto

next
assume a11locNE :loc PQ 6= {}
from a1 and a11 and sg1 and assms show ?thesis

apply (simp add : ine-def , auto)
by (simp add : correctCompositionKS-exprChannel-k-Pex)

qed
next

assume a12 :¬ ine P (kE key)
from this and a1 and assms show ?thesis

by (auto, simp add : LocalSecretsComposition1)
qed

next
fix secret
assume a2 :m = sKS secret
show ?thesis
proof (cases ine P (sE secret))

assume a21 :ine P (sE secret)
from this have a21ext :ine P (sE secret) | ine Q (sE secret) by simp
from h4 and h6 and h1 and h2 have m /∈ specKeysSecrets PQ

by (rule correctCompositionKS-neg1)
from this and a2 have sg2 :sKS secret /∈ specKeysSecrets PQ by simp
from a2 and a21ext and h6 show ?thesis
proof (cases loc PQ = {})

assume a21locE :loc PQ = {}
from a21ext and h4 and h5 and a21locE have ine PQ (sE secret)

by (rule TBtheorem4a-empty)
from this and a2 show ?thesis by auto

next
assume a21locNE :loc PQ 6= {}
from a2 and a21 and sg2 and assms show ?thesis

apply (simp add : ine-def , auto)
by (simp add : correctCompositionKS-exprChannel-s-Pex)

qed
next

assume a12 :¬ ine P (sE secret)
from this and a2 and assms show ?thesis

by (auto, simp add : LocalSecretsComposition1)
qed

qed

lemma know-composition2 :
assumes m /∈ specKeysSecrets P

32

and m /∈ specKeysSecrets Q
and know Q m
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows know PQ m
using assms by (metis insert-commute know-composition1)

lemma know-composition:
assumes m /∈ specKeysSecrets P

and m /∈ specKeysSecrets Q
and know P m ∨ know Q m
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows know PQ m
using assms by (metis know-composition1 know-composition2)

theorem know-composition-neg-ine-k :
assumes ¬ know P (kKS key)

and ¬ know Q (kKS key)
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ

shows ¬ (ine PQ (kE key))
using assms by (metis TBtheorem3a not-know-k-not-ine)

theorem know-composition-neg-ine-s:
assumes ¬ know P (sKS secret)

and ¬ know Q (sKS secret)
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ

shows ¬ (ine PQ (sE secret))
using assms by (metis TBtheorem3a not-know-s-not-ine)

lemma know-composition-neg1 :
assumes h1 :m /∈ specKeysSecrets P

and h2 :m /∈ specKeysSecrets Q
and h3 :¬ know P m
and h4 :¬ know Q m
and h5 :subcomponents PQ = {P ,Q}
and h6 :correctCompositionLoc PQ
and h7 :correctCompositionIn PQ

and h8 :correctCompositionKS PQ
shows ¬ know PQ m
proof (cases m)

fix key
assume a1 :m = kKS key
from h3 and a1 have sg1 :¬ know P (kKS key) by simp
then have sg1a:¬ ine P (kE key) by simp

33

from sg1 have sg1b:kKS key /∈ LocalSecrets P by simp
from h4 and a1 have sg2 :¬ know Q (kKS key) by simp
then have sg2a:¬ ine Q (kE key) by simp
from sg2 have sg2b:kKS key /∈ LocalSecrets Q by simp
from sg1 and sg2 and h5 and h7 have sg3 :¬ ine PQ (kE key)

by (rule know-composition-neg-ine-k)
from h5 and h6 and sg1a and sg2a and sg1b and sg2b have sg4 :
kKS key /∈ LocalSecrets PQ

by (rule LocalSecretsComposition-neg1-k)
from sg3 and sg4 and a1 show ?thesis by simp

next
fix secret
assume a2 :m = sKS secret
from h3 and a2 have sg1 :¬ know P (sKS secret) by simp
then have sg1a:¬ ine P (sE secret) by simp
from sg1 have sg1b:sKS secret /∈ LocalSecrets P by simp
from h4 and a2 have sg2 :¬ know Q (sKS secret) by simp
then have sg2a:¬ ine Q (sE secret) by simp
from sg2 have sg2b:sKS secret /∈ LocalSecrets Q by simp
from sg1 and sg2 and h5 and h7 have sg3 :¬ ine PQ (sE secret)

by (rule know-composition-neg-ine-s)
from h5 and h6 and sg1a and sg2a and sg1b and sg2b have sg4 :
sKS secret /∈ LocalSecrets PQ

by (rule LocalSecretsComposition-neg1-s)
from sg3 and sg4 and a2 show ?thesis by simp

qed

lemma know-decomposition:
assumes h1 :m /∈ specKeysSecrets P

and h2 :m /∈ specKeysSecrets Q
and h3 :know PQ m
and h4 :subcomponents PQ = {P ,Q}
and h5 :correctCompositionIn PQ
and h6 :correctCompositionLoc PQ

shows know P m ∨ know Q m
proof (cases m)

fix key
assume a1 :m = kKS key
from this show ?thesis
proof (cases ine PQ (kE key))

assume a11 :ine PQ (kE key)
from this and h4 and h5 and a1 have
ine P (kE key) ∨ ine Q (kE key)
by (simp add : TBtheorem1a)

from this and a1 show ?thesis by auto
next

assume a12 :¬ ine PQ (kE key)
from this and h3 and a1 have sg2 :kKS key ∈ LocalSecrets PQ by auto
show ?thesis

34

proof (cases know Q m)
assume know Q m
from this show ?thesis by simp

next
assume not-knowQm:¬ know Q m
from not-knowQm and a1 have sg3a:¬ ine Q (kE key) by simp
from not-knowQm and a1 have sg3b:kKS key /∈ LocalSecrets Q by simp
show ?thesis
proof (cases kKS key ∈ LocalSecrets P)

assume kKS key ∈ LocalSecrets P
from this and a1 show ?thesis by simp

next
assume kKS key /∈ LocalSecrets P
from sg2 and h4 and h6 and sg3a and this and sg3b have ine P (kE

key)
by (simp add : LocalSecretsComposition-ine1-k)

from this and a1 show ?thesis by simp
qed

qed
qed

next
fix secret
assume a2 :m = sKS secret
from this show ?thesis
proof (cases ine PQ (sE secret))

assume a21 :ine PQ (sE secret)
from this and h4 and h5 and a2 have
ine P (sE secret) ∨ ine Q (sE secret)
by (simp add : TBtheorem1a)

from this and a2 show ?thesis by auto
next

assume a22 :¬ ine PQ (sE secret)
from this and h3 and a2 have sg5 :
sKS secret ∈ LocalSecrets PQ by auto

show ?thesis
proof (cases know Q m)

assume know Q m
from this show ?thesis by simp

next
assume not-knowQm:¬ know Q m
from not-knowQm and a2 have sg6a:¬ ine Q (sE secret) by simp
from not-knowQm and a2 have sg6b:sKS secret /∈ LocalSecrets Q by simp
show ?thesis
proof (cases sKS secret ∈ LocalSecrets P)

assume sKS secret ∈ LocalSecrets P
from this and a2 show ?thesis by simp

next
assume sKS secret /∈ LocalSecrets P
from sg5 and h4 and h6 and sg6a and this and sg6b have

35

ine P (sE secret)
by (simp add : LocalSecretsComposition-ine1-s)

from this and a2 show ?thesis by simp
qed

qed
qed

qed

lemma eout-knows-nonKS-k :
assumes h1 :m /∈ (specKeys A)

and h2 :eout A (kE m)
and h3 :eoutKnowsECorrect A (kE m)

shows knows A [kE m]
proof −

from h3 and h2 have
(∃ k . (kE m) = (kE k) ∧ (k ∈ specKeys A)) ∨ (knows A [kE m])

by (simp only : eoutKnowsECorrect-def , auto)
from this and h1 show ?thesis by simp

qed

lemma eout-knows-nonKS-s:
assumes h1 :m /∈ specSecrets A

and h2 :eout A (sE m)
and h3 :eoutKnowsECorrect A (sE m)

shows knows A [sE m]
proof −

from h3 and h2 have
(∃ s. (sE m) = (sE s) ∧ (s ∈ specSecrets A)) ∨ (knows A [sE m])

by (simp only : eoutKnowsECorrect-def , auto)
from this and h1 show ?thesis by simp

qed

lemma not-knows-k-not-ine:
assumes ¬ knows A [kE m]
shows ¬ ine A (kE m)
using assms by (metis knows2know-neg-k not-know-k-not-ine)

lemma not-knows-s-not-ine:
assumes ¬ knows A [sE m]
shows ¬ ine A (sE m)
using assms by (metis knows2know-neg-s not-know-s-not-ine)

lemma not-knows-k-not-eout :
assumes m /∈ specKeys A

and ¬ knows A [kE m]
and eoutKnowsECorrect A (kE m)

shows ¬ eout A (kE m)
using assms by (metis eout-knows-nonKS-k)

36

lemma not-knows-s-not-eout :
assumes m /∈ specSecrets A

and ¬ knows A [sE m]
and eoutKnowsECorrect A (sE m)

shows ¬ eout A (sE m)
using assms by (metis eout-knows-nonKS-s)

lemma adv-not-knows1 :
assumes out P ⊆ ins A

and ¬ knows A [kE m]
shows ¬ eout P (kE m)
using assms by (metis adv-not-know1 knows2know-neg-k)

lemma adv-not-knows2 :
assumes out P ⊆ ins A

and ¬ knows A [sE m]
shows ¬ eout P (sE m)
using assms by (metis adv-not-know2 knows2know-neg-s)

lemma knows-decomposition-1-k :
assumes kKS a /∈ specKeysSecrets P

and kKS a /∈ specKeysSecrets Q
and subcomponents PQ = {P , Q}
and knows PQ [kE a]
and correctCompositionIn PQ
and correctCompositionLoc PQ

shows knows P [kE a] ∨ knows Q [kE a]
using assms by (metis know-decomposition knows1k)

lemma knows-decomposition-1-s:
assumes sKS a /∈ specKeysSecrets P

and sKS a /∈ specKeysSecrets Q
and subcomponents PQ = {P , Q}
and knows PQ [sE a]
and correctCompositionIn PQ
and correctCompositionLoc PQ

shows knows P [sE a] ∨ knows Q [sE a]
using assms by (metis know-decomposition knows1s)

lemma knows-decomposition-1 :
assumes subcomponents PQ = {P , Q}

and knows PQ [a]
and correctCompositionIn PQ
and correctCompositionLoc PQ
and (∃ z . a = kE z) ∨ (∃ z . a = sE z)
and ∀ z . a = kE z −→

kKS z /∈ specKeysSecrets P ∧ kKS z /∈ specKeysSecrets Q
and h7 :∀ z . a = sE z −→

sKS z /∈ specKeysSecrets P ∧ sKS z /∈ specKeysSecrets Q

37

shows knows P [a] ∨ knows Q [a]
using assms
by (metis knows-decomposition-1-k knows-decomposition-1-s)

lemma knows-composition1-k :
assumes (kKS m) /∈ specKeysSecrets P

and (kKS m) /∈ specKeysSecrets Q
and knows P [kE m]
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows knows PQ [kE m]
using assms by (metis know-composition knows1k)

lemma knows-composition1-s:
assumes (sKS m) /∈ specKeysSecrets P

and (sKS m) /∈ specKeysSecrets Q
and knows P [sE m]
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows knows PQ [sE m]
using assms by (metis know-composition knows1s)

lemma knows-composition2-k :
assumes (kKS m) /∈ specKeysSecrets P

and (kKS m) /∈ specKeysSecrets Q
and knows Q [kE m]
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows knows PQ [kE m]
using assms
by (metis know2knowsPQ-k know-composition knows2know-k)

lemma knows-composition2-s:
assumes (sKS m) /∈ specKeysSecrets P

and (sKS m) /∈ specKeysSecrets Q
and knows Q [sE m]
and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ

shows knows PQ [sE m]
using assms
by (metis know2knowsPQ-s know-composition knows2know-s)

lemma knows-composition-neg1-k :
assumes kKS m /∈ specKeysSecrets P

and kKS m /∈ specKeysSecrets Q

38

and ¬ knows P [kE m]
and ¬ knows Q [kE m]
and subcomponents PQ = {P ,Q}
and correctCompositionLoc PQ
and correctCompositionIn PQ
and correctCompositionKS PQ

shows ¬ knows PQ [kE m]
using assms by (metis know-decomposition knows1k)

lemma knows-composition-neg1-s:
assumes sKS m /∈ specKeysSecrets P

and sKS m /∈ specKeysSecrets Q
and ¬ knows P [sE m]
and ¬ knows Q [sE m]
and subcomponents PQ = {P ,Q}
and correctCompositionLoc PQ
and correctCompositionIn PQ
and correctCompositionKS PQ

shows ¬ knows PQ [sE m]
using assms by (metis knows-decomposition-1-s)

lemma knows-concat-1 :
assumes knows P (a # e)
shows knows P [a]
using assms by (metis append-Cons append-Nil knows2)

lemma knows-concat-2 :
assumes knows P (a # e)
shows knows P e
using assms by (metis append-Cons append-Nil knows2a)

lemma knows-concat-3 :
assumes knows P [a]

and knows P e
shows knows P (a # e)
using assms by (metis append-Cons append-Nil knows3)

lemma not-knows-conc-knows-elem-not-knows-tail :
assumes ¬ knows P (a # e)

and knows P [a]
shows ¬ knows P e
using assms by (metis knows-concat-3)

lemma not-knows-conc-not-knows-elem-tail :
assumes ¬ knows P (a#e)
shows ¬ knows P [a] ∨ ¬ knows P e
using assms by (metis append-Cons append-Nil knows3)

lemma not-knows-elem-not-knows-conc:

39

assumes ¬ knows P [a]
shows ¬ knows P (a # e)
using assms by (metis knows-concat-1)

lemma not-knows-tail-not-knows-conc:
assumes ¬ knows P e
shows ¬ knows P (a # e)
using assms by (metis knows-concat-2)

lemma knows-composition3 :
fixes e::Expression list
assumes h1 :knows P e

and h2 :subcomponents PQ = {P ,Q}
and h3 :correctCompositionIn PQ
and h4 :correctCompositionKS PQ
and h5 :∀ (m::Expression). ((m mem e) −→

((∃ z1 . m = (kE z1)) ∨ (∃ z2 . m = (sE z2))))
and h6 :notSpecKeysSecretsExpr P e
and h7 :notSpecKeysSecretsExpr Q e

shows knows PQ e
using assms
proof (induct e)

case Nil
from this show ?case by (simp only : knows-emptyexpression)

next
fix a l
case (Cons a l)
from Cons have sg1 :knows P [a] by (simp add : knows-concat-1)
from Cons have sg2 :knows P l by (simp only : knows-concat-2)
from sg1 have sg3 :a mem (a # l) by simp
from Cons and sg2 have sg2a:knows PQ l

by (simp add : notSpecKeysSecretsExpr-L2)
from Cons and sg1 and sg2 and sg3 show ?case
proof (cases ∃ z1 . a = kE z1)

assume ∃ z1 . a = (kE z1)
from this obtain z where a1 :a = (kE z) by auto
from a1 and Cons have sg4 :(kKS z) /∈ specKeysSecrets P

by (simp add : notSpecKeysSecretsExpr-def)
from a1 and Cons have sg5 :(kKS z) /∈ specKeysSecrets Q

by (simp add : notSpecKeysSecretsExpr-def)
from sg1 and a1 have sg6 :knows P [kE z] by simp
from sg4 and sg5 and sg6 and h2 and h3 and h4

have knows PQ [kE z]
by (rule knows-composition1-k)

from this and sg2a and a1 show ?case by (simp add : knows-concat-3)
next

assume ¬ (∃ z1 . a = kE z1)
from this and Cons and sg3 have ∃ z2 . a = (sE z2) by auto
from this obtain z where a2 :a = (sE z) by auto

40

from a2 and Cons have sg8 :(sKS z) /∈ specKeysSecrets P
by (simp add : notSpecKeysSecretsExpr-def)

from a2 and Cons have sg9 :(sKS z) /∈ specKeysSecrets Q
by (simp add : notSpecKeysSecretsExpr-def)

from sg1 and a2 have sg10 :knows P [sE z] by simp
from sg8 and sg9 and sg10 and h2 and h3 and h4

have knows PQ [sE z]
by (rule knows-composition1-s)

from this and sg2a and a2 show ?case by (simp add : knows-concat-3)
qed

qed

lemma knows-composition4 :
assumes h1 :knows Q e

and h2 :subcomponents PQ = {P ,Q}
and h3 :correctCompositionIn PQ
and h4 :correctCompositionKS PQ
and h5 :∀ m. m mem e −→ ((∃ z . m = kE z) ∨ (∃ z . m = sE z))
and h6 :notSpecKeysSecretsExpr P e
and h7 :notSpecKeysSecretsExpr Q e

shows knows PQ e
using assms
proof (induct e)

case Nil
from this show ?case by (simp only : knows-emptyexpression)

next
fix a l
case (Cons a l)
from Cons have sg1 :knows Q [a] by (simp add : knows-concat-1)
from Cons have sg2 :knows Q l by (simp only : knows-concat-2)
from sg1 have sg3 :a mem (a # l) by simp
from Cons and sg2 have sg2a:knows PQ l

by (simp add : notSpecKeysSecretsExpr-L2)
from Cons and sg1 and sg2 and sg3 show ?case
proof (cases ∃ z1 . a = kE z1)

assume ∃ z1 . a = (kE z1)
from this obtain z where a1 :a = (kE z) by auto
from a1 and Cons have sg4 :(kKS z) /∈ specKeysSecrets P

by (simp add : notSpecKeysSecretsExpr-def)
from a1 and Cons have sg5 :(kKS z) /∈ specKeysSecrets Q

by (simp add : notSpecKeysSecretsExpr-def)
from sg1 and a1 have sg6 :knows Q [kE z] by simp
from sg4 and sg5 and sg6 and h2 and h3 and h4

have knows PQ [kE z]
by (rule knows-composition2-k)

from this and sg2a and a1 show ?case by (simp add : knows-concat-3)
next

assume ¬ (∃ z1 . a = kE z1)
from this and Cons and sg3 have ∃ z2 . a = (sE z2) by auto

41

from this obtain z where a2 :a = (sE z) by auto
from a2 and Cons have sg8 :(sKS z) /∈ specKeysSecrets P

by (simp add : notSpecKeysSecretsExpr-def)
from a2 and Cons have sg9 :(sKS z) /∈ specKeysSecrets Q

by (simp add : notSpecKeysSecretsExpr-def)
from sg1 and a2 have sg10 :knows Q [sE z] by simp
from sg8 and sg9 and sg10 and h2 and h3 and h4

have knows PQ [sE z]
by (rule knows-composition2-s)

from this and sg2a and a2 show ?case by (simp add : knows-concat-3)
qed

qed

lemma knows-composition5 :
assumes knows P e ∨ knows Q e

and subcomponents PQ = {P ,Q}
and correctCompositionIn PQ
and correctCompositionKS PQ
and ∀ m. m mem e −→ ((∃ z . m = kE z) ∨ (∃ z . m = sE z))
and notSpecKeysSecretsExpr P e
and notSpecKeysSecretsExpr Q e

shows knows PQ e
using assms by (metis knows-composition3 knows-composition4)

end

42

