Abstract
This work presents a formalization of the Quantum Fourier Transform, a fundamental component of Shor's factoring algorithm, with proofs of its correctness and unitarity. The proof is carried out by induction, relying on the algorithm's recursive definition. This formalization builds upon the Isabelle Marries Dirac quantum computing library, developed by A. Bordg, H. Lachnitt, and Y. He.
License
Topics
Related publications
- Nielsen, M. A., & Chuang, I. L. (2012). Quantum Computation and Quantum Information. https://doi.org/10.1017/cbo9780511976667
- Bordg, A., Lachnitt, H., & He, Y. (2020). Certified Quantum Computation in Isabelle/HOL. Journal of Automated Reasoning, 65(5), 691–709. https://doi.org/10.1007/s10817-020-09584-7
- Peng, Y., Hietala, K., Tao, R., Li, L., Rand, R., Hicks, M., & Wu, X. (2022). A Formally Certified End-to-End Implementation of Shor's Factorization Algorithm (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2204.07112