Abstract
Partial Semigroups are relevant to the foundations of quantum
mechanics and combinatorics as well as to interval and separation
logics. Convolution algebras can be understood either as algebras of
generalised binary modalities over ternary Kripke frames, in
particular over partial semigroups, or as algebras of quantale-valued
functions which are equipped with a convolution-style operation of
multiplication that is parametrised by a ternary relation. Convolution
algebras provide algebraic semantics for various substructural logics,
including categorial, relevance and linear logics, for separation
logic and for interval logics; they cover quantitative and qualitative
applications. These mathematical components for partial semigroups and
convolution algebras provide uniform foundations from which models of
computation based on relations, program traces or pomsets, and
verification components for separation or interval temporal logics can
be built with little effort.
License
Topics
Session PSemigroupsConvolution
- Partial_Semigroups
- Partial_Semigroup_Models
- Quantales
- Binary_Modalities
- Unary_Modalities
- Partial_Semigroup_Lifting