Abstract
We formalize the theory of forcing in the set theory framework of
Isabelle/ZF. Under the assumption of the existence of a countable
transitive model of ZFC, we construct a proper generic extension and
show that the latter also satisfies ZFC.
License
Topics
Session Forcing
- Utils
- Forcing_Notions
- Pointed_DC
- Rasiowa_Sikorski
- Nat_Miscellanea
- Internalizations
- Recursion_Thms
- Relative_Univ
- Synthetic_Definition
- Interface
- Forcing_Data
- Internal_ZFC_Axioms
- Renaming
- Renaming_Auto
- Names
- FrecR
- Arities
- Forces_Definition
- Forcing_Theorems
- Separation_Rename
- Separation_Axiom
- Pairing_Axiom
- Union_Axiom
- Powerset_Axiom
- Extensionality_Axiom
- Foundation_Axiom
- Least
- Replacement_Axiom
- Infinity_Axiom
- Choice_Axiom
- Ordinals_In_MG
- Proper_Extension
- Succession_Poset
- Forcing_Main