Abstract
The article provides a formalization of elements of the theory of
universal constructions for 1-categories (such as limits, adjoints and
Kan extensions) in the object logic ZFC in HOL of the formal proof
assistant Isabelle. The article builds upon the foundations
established in the AFP entry Category Theory for ZFC in HOL
II: Elementary Theory of 1-Categories.
License
History
- May 16, 2022
- creation and preservation of limits (revision 68412a363595)
Topics
Session CZH_Universal_Constructions
- CZH_UCAT_Introduction
- CZH_UCAT_Universal
- CZH_UCAT_Limit
- CZH_UCAT_Limit_IT
- CZH_UCAT_Limit_Product
- CZH_UCAT_Limit_Pullback
- CZH_UCAT_Limit_Equalizer
- CZH_UCAT_Pointed
- CZH_UCAT_Representable
- CZH_UCAT_Complete
- CZH_UCAT_Comma
- CZH_UCAT_Set
- CZH_UCAT_Adjoints
- CZH_UCAT_Kan
- CZH_UCAT_PWKan
- CZH_UCAT_PWKan_Example
- CZH_UCAT_Conclusions