Theory WellType

Up to index of Isabelle/HOL/Jinja

theory WellType
imports Expr
(*  Title:      Jinja/J/WellType.thy

Author: Tobias Nipkow
Copyright 2003 Technische Universitaet Muenchen
*)


header {* \isaheader{Well-typedness of Jinja expressions} *}

theory WellType
imports "../Common/Objects" Expr
begin

type_synonym
env = "vname \<rightharpoonup> ty"

inductive
WT :: "[J_prog,env, expr , ty ] => bool"
("_,_ \<turnstile> _ :: _" [51,51,51]50)
and WTs :: "[J_prog,env, expr list, ty list] => bool"
("_,_ \<turnstile> _ [::] _" [51,51,51]50)
for P :: J_prog
where

WTNew:
"is_class P C ==>
P,E \<turnstile> new C :: Class C"


| WTCast:
"[| P,E \<turnstile> e :: Class D; is_class P C; P \<turnstile> C \<preceq>* D ∨ P \<turnstile> D \<preceq>* C |]
==> P,E \<turnstile> Cast C e :: Class C"


| WTVal:
"typeof v = Some T ==>
P,E \<turnstile> Val v :: T"


| WTVar:
"E V = Some T ==>
P,E \<turnstile> Var V :: T"

(*
WTBinOp:
"[| P,E \<turnstile> e1 :: T1; P,E \<turnstile> e2 :: T2;
case bop of Eq => (P \<turnstile> T1 ≤ T2 ∨ P \<turnstile> T2 ≤ T1) ∧ T = Boolean
| Add => T1 = Integer ∧ T2 = Integer ∧ T = Integer |]
==> P,E \<turnstile> e1 «bop» e2 :: T"
*)

| WTBinOpEq:
"[| P,E \<turnstile> e1 :: T1; P,E \<turnstile> e2 :: T2; P \<turnstile> T1 ≤ T2 ∨ P \<turnstile> T2 ≤ T1 |]
==> P,E \<turnstile> e1 «Eq» e2 :: Boolean"


| WTBinOpAdd:
"[| P,E \<turnstile> e1 :: Integer; P,E \<turnstile> e2 :: Integer |]
==> P,E \<turnstile> e1 «Add» e2 :: Integer"


| WTLAss:
"[| E V = Some T; P,E \<turnstile> e :: T'; P \<turnstile> T' ≤ T; V ≠ this |]
==> P,E \<turnstile> V:=e :: Void"


| WTFAcc:
"[| P,E \<turnstile> e :: Class C; P \<turnstile> C sees F:T in D |]
==> P,E \<turnstile> e•F{D} :: T"


| WTFAss:
"[| P,E \<turnstile> e1 :: Class C; P \<turnstile> C sees F:T in D; P,E \<turnstile> e2 :: T'; P \<turnstile> T' ≤ T |]
==> P,E \<turnstile> e1•F{D}:=e2 :: Void"


| WTCall:
"[| P,E \<turnstile> e :: Class C; P \<turnstile> C sees M:Ts -> T = (pns,body) in D;
P,E \<turnstile> es [::] Ts'; P \<turnstile> Ts' [≤] Ts |]
==> P,E \<turnstile> e•M(es) :: T"


| WTBlock:
"[| is_type P T; P,E(V \<mapsto> T) \<turnstile> e :: T' |]
==> P,E \<turnstile> {V:T; e} :: T'"


| WTSeq:
"[| P,E \<turnstile> e1::T1; P,E \<turnstile> e2::T2 |]
==> P,E \<turnstile> e1;;e2 :: T2"

| WTCond:
"[| P,E \<turnstile> e :: Boolean; P,E \<turnstile> e1::T1; P,E \<turnstile> e2::T2;
P \<turnstile> T1 ≤ T2 ∨ P \<turnstile> T2 ≤ T1; P \<turnstile> T1 ≤ T2 --> T = T2; P \<turnstile> T2 ≤ T1 --> T = T1 |]
==> P,E \<turnstile> if (e) e1 else e2 :: T"


| WTWhile:
"[| P,E \<turnstile> e :: Boolean; P,E \<turnstile> c::T |]
==> P,E \<turnstile> while (e) c :: Void"


| WTThrow:
"P,E \<turnstile> e :: Class C ==>
P,E \<turnstile> throw e :: Void"


| WTTry:
"[| P,E \<turnstile> e1 :: T; P,E(V \<mapsto> Class C) \<turnstile> e2 :: T; is_class P C |]
==> P,E \<turnstile> try e1 catch(C V) e2 :: T"


-- "well-typed expression lists"

| WTNil:
"P,E \<turnstile> [] [::] []"

| WTCons:
"[| P,E \<turnstile> e :: T; P,E \<turnstile> es [::] Ts |]
==> P,E \<turnstile> e#es [::] T#Ts"


(*<*)
(*
lemmas [intro!] = WTNew WTCast WTVal WTVar WTBinOp WTLAss WTFAcc WTFAss WTCall WTBlock WTSeq
WTWhile WTThrow WTTry WTNil WTCons
lemmas [intro] = WTCond1 WTCond2
*)

declare WT_WTs.intros[intro!] (* WTNil[iff] *)

lemmas WT_WTs_induct = WT_WTs.induct [split_format (complete)]
and WT_WTs_inducts = WT_WTs.inducts [split_format (complete)]
(*>*)

lemma [iff]: "(P,E \<turnstile> [] [::] Ts) = (Ts = [])"
(*<*)
apply(rule iffI)
apply (auto elim: WTs.cases)
done
(*>*)

lemma [iff]: "(P,E \<turnstile> e#es [::] T#Ts) = (P,E \<turnstile> e :: T ∧ P,E \<turnstile> es [::] Ts)"
(*<*)
apply(rule iffI)
apply (auto elim: WTs.cases)
done
(*>*)

lemma [iff]: "(P,E \<turnstile> (e#es) [::] Ts) =
(∃U Us. Ts = U#Us ∧ P,E \<turnstile> e :: U ∧ P,E \<turnstile> es [::] Us)"

(*<*)
apply(rule iffI)
apply (auto elim: WTs.cases)
done
(*>*)

lemma [iff]: "!!Ts. (P,E \<turnstile> es1 @ es2 [::] Ts) =
(∃Ts1 Ts2. Ts = Ts1 @ Ts2 ∧ P,E \<turnstile> es1 [::] Ts1 ∧ P,E \<turnstile> es2[::]Ts2)"

(*<*)
apply(induct es1 type:list)
apply simp
apply clarsimp
apply(erule thin_rl)
apply (rule iffI)
apply clarsimp
apply(rule exI)+
apply(rule conjI)
prefer 2 apply blast
apply simp
apply fastforce
done
(*>*)

lemma [iff]: "P,E \<turnstile> Val v :: T = (typeof v = Some T)"
(*<*)
apply(rule iffI)
apply (auto elim: WT.cases)
done
(*>*)

lemma [iff]: "P,E \<turnstile> Var V :: T = (E V = Some T)"
(*<*)
apply(rule iffI)
apply (auto elim: WT.cases)
done
(*>*)

lemma [iff]: "P,E \<turnstile> e1;;e2 :: T2 = (∃T1. P,E \<turnstile> e1::T1 ∧ P,E \<turnstile> e2::T2)"
(*<*)
apply(rule iffI)
apply (auto elim: WT.cases)
done
(*>*)

lemma [iff]: "(P,E \<turnstile> {V:T; e} :: T') = (is_type P T ∧ P,E(V\<mapsto>T) \<turnstile> e :: T')"
(*<*)
apply(rule iffI)
apply (auto elim: WT.cases)
done
(*>*)

(*<*)
inductive_cases WT_elim_cases[elim!]:
"P,E \<turnstile> V :=e :: T"
"P,E \<turnstile> if (e) e1 else e2 :: T"
"P,E \<turnstile> while (e) c :: T"
"P,E \<turnstile> throw e :: T"
"P,E \<turnstile> try e1 catch(C V) e2 :: T"
"P,E \<turnstile> Cast D e :: T"
"P,E \<turnstile> a•F{D} :: T"
"P,E \<turnstile> a•F{D} := v :: T"
"P,E \<turnstile> e1 «bop» e2 :: T"
"P,E \<turnstile> new C :: T"
"P,E \<turnstile> e•M(ps) :: T"
(*>*)


lemma wt_env_mono:
"P,E \<turnstile> e :: T ==> (!!E'. E ⊆m E' ==> P,E' \<turnstile> e :: T)" and
"P,E \<turnstile> es [::] Ts ==> (!!E'. E ⊆m E' ==> P,E' \<turnstile> es [::] Ts)"
(*<*)
apply(induct rule: WT_WTs_inducts)
apply(simp add: WTNew)
apply(fastforce simp: WTCast)
apply(fastforce simp: WTVal)
apply(simp add: WTVar map_le_def dom_def)
apply(fastforce simp: WTBinOpEq)
apply(fastforce simp: WTBinOpAdd)
apply(force simp:map_le_def)
apply(fastforce simp: WTFAcc)
apply(fastforce simp: WTFAss del:WT_WTs.intros WT_elim_cases)
apply(fastforce simp: WTCall)
apply(fastforce simp: map_le_def WTBlock)
apply(fastforce simp: WTSeq)
apply(fastforce simp: WTCond)
apply(fastforce simp: WTWhile)
apply(fastforce simp: WTThrow)
apply(fastforce simp: WTTry map_le_def dom_def)
apply(simp add: WTNil)
apply(simp add: WTCons)
done
(*>*)


lemma WT_fv: "P,E \<turnstile> e :: T ==> fv e ⊆ dom E"
and "P,E \<turnstile> es [::] Ts ==> fvs es ⊆ dom E"
(*<*)
apply(induct rule:WT_WTs.inducts)
apply(simp_all del: fun_upd_apply)
apply fast+
done

end
(*>*)