Theory WellForm

Up to index of Isabelle/HOL/Jinja

theory WellForm
imports SystemClasses
(*  Title:      Jinja/J/WellForm.thy

Author: Tobias Nipkow
Copyright 2003 Technische Universitaet Muenchen
*)


header {* \isaheader{Generic Well-formedness of programs} *}

theory WellForm imports TypeRel SystemClasses begin

text {*\noindent This theory defines global well-formedness conditions
for programs but does not look inside method bodies. Hence it works
for both Jinja and JVM programs. Well-typing of expressions is defined
elsewhere (in theory @{text WellType}).

Because Jinja does not have method overloading, its policy for method
overriding is the classical one: \emph{covariant in the result type
but contravariant in the argument types.} This means the result type
of the overriding method becomes more specific, the argument types
become more general.
*}


type_synonym 'm wf_mdecl_test = "'m prog => cname => 'm mdecl => bool"

definition wf_fdecl :: "'m prog => fdecl => bool"
where
"wf_fdecl P ≡ λ(F,T). is_type P T"

definition wf_mdecl :: "'m wf_mdecl_test => 'm wf_mdecl_test"
where
"wf_mdecl wf_md P C ≡ λ(M,Ts,T,mb).
(∀T∈set Ts. is_type P T) ∧ is_type P T ∧ wf_md P C (M,Ts,T,mb)"


definition wf_cdecl :: "'m wf_mdecl_test => 'm prog => 'm cdecl => bool"
where
"wf_cdecl wf_md P ≡ λ(C,(D,fs,ms)).
(∀f∈set fs. wf_fdecl P f) ∧ distinct_fst fs ∧
(∀m∈set ms. wf_mdecl wf_md P C m) ∧ distinct_fst ms ∧
(C ≠ Object -->
is_class P D ∧ ¬ P \<turnstile> D \<preceq>* C ∧
(∀(M,Ts,T,m)∈set ms.
∀D' Ts' T' m'. P \<turnstile> D sees M:Ts' -> T' = m' in D' -->
P \<turnstile> Ts' [≤] Ts ∧ P \<turnstile> T ≤ T'))"


definition wf_syscls :: "'m prog => bool"
where
"wf_syscls P ≡ {Object} ∪ sys_xcpts ⊆ set(map fst P)"

definition wf_prog :: "'m wf_mdecl_test => 'm prog => bool"
where
"wf_prog wf_md P ≡ wf_syscls P ∧ (∀c ∈ set P. wf_cdecl wf_md P c) ∧ distinct_fst P"


subsection{* Well-formedness lemmas *}

lemma class_wf:
"[|class P C = Some c; wf_prog wf_md P|] ==> wf_cdecl wf_md P (C,c)"
(*<*)
apply (unfold wf_prog_def class_def)
apply (fast dest: map_of_SomeD)
done
(*>*)


lemma class_Object [simp]:
"wf_prog wf_md P ==> ∃C fs ms. class P Object = Some (C,fs,ms)"
(*<*)
apply (unfold wf_prog_def wf_syscls_def class_def)
apply (auto simp: map_of_SomeI)
done
(*>*)


lemma is_class_Object [simp]:
"wf_prog wf_md P ==> is_class P Object"
(*<*)by (simp add: is_class_def)(*>*)
(* Unused
lemma is_class_supclass:
assumes wf: "wf_prog wf_md P" and sub: "P \<turnstile> C \<preceq>* D"
shows "is_class P C ==> is_class P D"
using sub apply(induct)
apply assumption
apply(fastforce simp:wf_cdecl_def subcls1_def is_class_def
dest:class_wf[OF _ wf])
done

This is NOT true because P \<turnstile> NT ≤ Class C for any Class C
lemma is_type_suptype: "[| wf_prog p P; is_type P T; P \<turnstile> T ≤ T' |]
==> is_type P T'"
*)


lemma is_class_xcpt:
"[| C ∈ sys_xcpts; wf_prog wf_md P |] ==> is_class P C"
(*<*)
apply (simp add: wf_prog_def wf_syscls_def is_class_def class_def)
apply (fastforce intro!: map_of_SomeI)
done
(*>*)


lemma subcls1_wfD:
"[| P \<turnstile> C \<prec>1 D; wf_prog wf_md P |] ==> D ≠ C ∧ (D,C) ∉ (subcls1 P)+"
(*<*)
apply( frule r_into_trancl)
apply( drule subcls1D)
apply(clarify)
apply( drule (1) class_wf)
apply( unfold wf_cdecl_def)
apply(force simp add: reflcl_trancl [THEN sym] simp del: reflcl_trancl)
done
(*>*)


lemma wf_cdecl_supD:
"[|wf_cdecl wf_md P (C,D,r); C ≠ Object|] ==> is_class P D"
(*<*)by (auto simp: wf_cdecl_def)(*>*)


lemma subcls_asym:
"[| wf_prog wf_md P; (C,D) ∈ (subcls1 P)+ |] ==> (D,C) ∉ (subcls1 P)+"
(*<*)
apply(erule tranclE)
apply(fast dest!: subcls1_wfD )
apply(fast dest!: subcls1_wfD intro: trancl_trans)
done
(*>*)


lemma subcls_irrefl:
"[| wf_prog wf_md P; (C,D) ∈ (subcls1 P)+ |] ==> C ≠ D"
(*<*)
apply (erule trancl_trans_induct)
apply (auto dest: subcls1_wfD subcls_asym)
done
(*>*)


lemma acyclic_subcls1:
"wf_prog wf_md P ==> acyclic (subcls1 P)"
(*<*)
apply (unfold acyclic_def)
apply (fast dest: subcls_irrefl)
done
(*>*)


lemma wf_subcls1:
"wf_prog wf_md P ==> wf ((subcls1 P)¯)"
(*<*)
apply (rule finite_acyclic_wf)
apply ( subst finite_converse)
apply ( rule finite_subcls1)
apply (subst acyclic_converse)
apply (erule acyclic_subcls1)
done
(*>*)


lemma single_valued_subcls1:
"wf_prog wf_md G ==> single_valued (subcls1 G)"
(*<*)
by(auto simp:wf_prog_def distinct_fst_def single_valued_def dest!:subcls1D)
(*>*)


lemma subcls_induct:
"[| wf_prog wf_md P; !!C. ∀D. (C,D) ∈ (subcls1 P)+ --> Q D ==> Q C |] ==> Q C"
(*<*)
(is "?A ==> PROP ?P ==> _")
proof -
assume p: "PROP ?P"
assume ?A thus ?thesis apply -
apply(drule wf_subcls1)
apply(drule wf_trancl)
apply(simp only: trancl_converse)
apply(erule_tac a = C in wf_induct)
apply(rule p)
apply(auto)
done
qed
(*>*)


lemma subcls1_induct_aux:
"[| is_class P C; wf_prog wf_md P; Q Object;
!!C D fs ms.
[| C ≠ Object; is_class P C; class P C = Some (D,fs,ms) ∧
wf_cdecl wf_md P (C,D,fs,ms) ∧ P \<turnstile> C \<prec>1 D ∧ is_class P D ∧ Q D|] ==> Q C |]
==> Q C"

(*<*)
(is "?A ==> ?B ==> ?C ==> PROP ?P ==> _")
proof -
assume p: "PROP ?P"
assume ?A ?B ?C thus ?thesis apply -
apply(unfold is_class_def)
apply( rule impE)
prefer 2
apply( assumption)
prefer 2
apply( assumption)
apply( erule thin_rl)
apply( rule subcls_induct)
apply( assumption)
apply( rule impI)
apply( case_tac "C = Object")
apply( fast)
apply safe
apply( frule (1) class_wf)
apply( frule (1) wf_cdecl_supD)

apply( subgoal_tac "P \<turnstile> C \<prec>1 a")
apply( erule_tac [2] subcls1I)
apply( rule p)
apply (unfold is_class_def)
apply auto
done
qed
(*>*)

(* FIXME can't we prove this one directly?? *)
lemma subcls1_induct [consumes 2, case_names Object Subcls]:
"[| wf_prog wf_md P; is_class P C; Q Object;
!!C D. [|C ≠ Object; P \<turnstile> C \<prec>1 D; is_class P D; Q D|] ==> Q C |]
==> Q C"

(*<*)
apply (erule subcls1_induct_aux, assumption, assumption)
apply blast
done
(*>*)


lemma subcls_C_Object:
"[| is_class P C; wf_prog wf_md P |] ==> P \<turnstile> C \<preceq>* Object"
(*<*)
apply(erule (1) subcls1_induct)
apply( fast)
apply(erule (1) converse_rtrancl_into_rtrancl)
done
(*>*)


lemma is_type_pTs:
assumes "wf_prog wf_md P" and "(C,S,fs,ms) ∈ set P" and "(M,Ts,T,m) ∈ set ms"
shows "set Ts ⊆ types P"
(*<*)
proof
from assms have "wf_mdecl wf_md P C (M,Ts,T,m)"
by (unfold wf_prog_def wf_cdecl_def) auto
hence "∀t ∈ set Ts. is_type P t" by (unfold wf_mdecl_def) auto
moreover fix t assume "t ∈ set Ts"
ultimately have "is_type P t" by blast
thus "t ∈ types P" ..
qed
(*>*)


subsection{* Well-formedness and method lookup *}

lemma sees_wf_mdecl:
"[| wf_prog wf_md P; P \<turnstile> C sees M:Ts->T = m in D |] ==> wf_mdecl wf_md P D (M,Ts,T,m)"
(*<*)
apply(drule visible_method_exists)
apply(fastforce simp:wf_cdecl_def dest!:class_wf dest:map_of_SomeD)
done
(*>*)


lemma sees_method_mono [rule_format (no_asm)]:
"[| P \<turnstile> C' \<preceq>* C; wf_prog wf_md P |] ==>
∀D Ts T m. P \<turnstile> C sees M:Ts->T = m in D -->
(∃D' Ts' T' m'. P \<turnstile> C' sees M:Ts'->T' = m' in D' ∧ P \<turnstile> Ts [≤] Ts' ∧ P \<turnstile> T' ≤ T)"

(*<*)
apply( drule rtranclD)
apply( erule disjE)
apply( fastforce)
apply( erule conjE)
apply( erule trancl_trans_induct)
prefer 2
apply( clarify)
apply( drule spec, drule spec, drule spec, drule spec, erule (1) impE)
apply clarify
apply( fast elim: widen_trans widens_trans)
apply( clarify)
apply( drule subcls1D)
apply( clarify)
apply(clarsimp simp:Method_def)
apply(frule (2) sees_methods_rec)
apply(rule refl)
apply(case_tac "map_of ms M")
apply(rule_tac x = D in exI)
apply(rule_tac x = Ts in exI)
apply(rule_tac x = T in exI)
apply simp
apply(rule_tac x = m in exI)
apply(fastforce simp add:map_add_def split:option.split)
apply clarsimp
apply(rename_tac Ts' T' m')
apply( drule (1) class_wf)
apply( unfold wf_cdecl_def Method_def)
apply( frule map_of_SomeD)
apply auto
apply(drule (1) bspec, simp)
apply(erule_tac x=D in allE, erule_tac x=Ts in allE, erule_tac x=T in allE)
apply(fastforce simp:map_add_def split:option.split)
done
(*>*)


lemma sees_method_mono2:
"[| P \<turnstile> C' \<preceq>* C; wf_prog wf_md P;
P \<turnstile> C sees M:Ts->T = m in D; P \<turnstile> C' sees M:Ts'->T' = m' in D' |]
==> P \<turnstile> Ts [≤] Ts' ∧ P \<turnstile> T' ≤ T"

(*<*)by(blast dest:sees_method_mono sees_method_fun)(*>*)


lemma mdecls_visible:
assumes wf: "wf_prog wf_md P" and "class": "is_class P C"
shows "!!D fs ms. class P C = Some(D,fs,ms)
==> ∃Mm. P \<turnstile> C sees_methods Mm ∧ (∀(M,Ts,T,m) ∈ set ms. Mm M = Some((Ts,T,m),C))"

(*<*)
using wf "class"
proof (induct rule:subcls1_induct)
case Object
with wf have "distinct_fst ms"
by (unfold class_def wf_prog_def wf_cdecl_def) (fastforce dest:map_of_SomeD)
with Object show ?case by(fastforce intro!: sees_methods_Object map_of_SomeI)
next
case Subcls
with wf have "distinct_fst ms"
by (unfold class_def wf_prog_def wf_cdecl_def) (fastforce dest:map_of_SomeD)
with Subcls show ?case
by(fastforce elim:sees_methods_rec dest:subcls1D map_of_SomeI
simp:is_class_def)
qed
(*>*)


lemma mdecl_visible:
assumes wf: "wf_prog wf_md P" and C: "(C,S,fs,ms) ∈ set P" and m: "(M,Ts,T,m) ∈ set ms"
shows "P \<turnstile> C sees M:Ts->T = m in C"
(*<*)
proof -
from wf C have "class": "class P C = Some (S,fs,ms)"
by (auto simp add: wf_prog_def class_def is_class_def intro: map_of_SomeI)
from "class" have "is_class P C" by(auto simp:is_class_def)
with assms "class" show ?thesis
by(bestsimp simp:Method_def dest:mdecls_visible)
qed
(*>*)


lemma Call_lemma:
"[| P \<turnstile> C sees M:Ts->T = m in D; P \<turnstile> C' \<preceq>* C; wf_prog wf_md P |]
==> ∃D' Ts' T' m'.
P \<turnstile> C' sees M:Ts'->T' = m' in D' ∧ P \<turnstile> Ts [≤] Ts' ∧ P \<turnstile> T' ≤ T ∧ P \<turnstile> C' \<preceq>* D'
∧ is_type P T' ∧ (∀T∈set Ts'. is_type P T) ∧ wf_md P D' (M,Ts',T',m')"

(*<*)
apply(frule (2) sees_method_mono)
apply(fastforce intro:sees_method_decl_above dest:sees_wf_mdecl
simp: wf_mdecl_def)
done
(*>*)


lemma wf_prog_lift:
assumes wf: "wf_prog (λP C bd. A P C bd) P"
and rule:
"!!wf_md C M Ts C T m bd.
wf_prog wf_md P ==>
P \<turnstile> C sees M:Ts->T = m in C ==>
set Ts ⊆ types P ==>
bd = (M,Ts,T,m) ==>
A P C bd ==>
B P C bd"

shows "wf_prog (λP C bd. B P C bd) P"
(*<*)
proof -
from wf show ?thesis
apply (unfold wf_prog_def wf_cdecl_def)
apply clarsimp
apply (drule bspec, assumption)
apply (unfold wf_mdecl_def)
apply clarsimp
apply (drule bspec, assumption)
apply clarsimp
apply (frule mdecl_visible [OF wf], assumption+)
apply (frule is_type_pTs [OF wf], assumption+)
apply (drule rule [OF wf], assumption+)
apply auto
done
qed
(*>*)


subsection{* Well-formedness and field lookup *}

lemma wf_Fields_Ex:
"[| wf_prog wf_md P; is_class P C |] ==> ∃FDTs. P \<turnstile> C has_fields FDTs"
(*<*)
apply(frule class_Object)
apply(erule (1) subcls1_induct)
apply(blast intro:has_fields_Object)
apply(blast intro:has_fields_rec dest:subcls1D)
done
(*>*)


lemma has_fields_types:
"[| P \<turnstile> C has_fields FDTs; (FD,T) ∈ set FDTs; wf_prog wf_md P |] ==> is_type P T"
(*<*)
apply(induct rule:Fields.induct)
apply(fastforce dest!: class_wf simp: wf_cdecl_def wf_fdecl_def)
apply(fastforce dest!: class_wf simp: wf_cdecl_def wf_fdecl_def)
done
(*>*)


lemma sees_field_is_type:
"[| P \<turnstile> C sees F:T in D; wf_prog wf_md P |] ==> is_type P T"
(*<*)
by(fastforce simp: sees_field_def
elim: has_fields_types map_of_SomeD[OF map_of_remap_SomeD])
(*>*)

lemma wf_syscls:
"set SystemClasses ⊆ set P ==> wf_syscls P"
(*<*)
apply (simp add: image_def SystemClasses_def wf_syscls_def sys_xcpts_def
ObjectC_def NullPointerC_def ClassCastC_def OutOfMemoryC_def)
apply force
done
(*>*)

end