header {* \isaheader{Semantics} *}
theory Semantics imports Labels Com begin
subsection {* Small Step Semantics *}
inductive red :: "cmd * state => cmd * state => bool"
and red' :: "cmd => state => cmd => state => bool"
("((1〈_,/_〉) ->/ (1〈_,/_〉))" [0,0,0,0] 81)
where
"〈c,s〉 -> 〈c',s'〉 == red (c,s) (c',s')"
| RedLAss:
"〈V:=e,s〉 -> 〈Skip,s(V:=(interpret e s))〉"
| SeqRed:
"〈c⇣1,s〉 -> 〈c⇣1',s'〉 ==> 〈c⇣1;;c⇣2,s〉 -> 〈c⇣1';;c⇣2,s'〉"
| RedSeq:
"〈Skip;;c⇣2,s〉 -> 〈c⇣2,s〉"
| RedCondTrue:
"interpret b s = Some true ==> 〈if (b) c⇣1 else c⇣2,s〉 -> 〈c⇣1,s〉"
| RedCondFalse:
"interpret b s = Some false ==> 〈if (b) c⇣1 else c⇣2,s〉 -> 〈c⇣2,s〉"
| RedWhileTrue:
"interpret b s = Some true ==> 〈while (b) c,s〉 -> 〈c;;while (b) c,s〉"
| RedWhileFalse:
"interpret b s = Some false ==> 〈while (b) c,s〉 -> 〈Skip,s〉"
lemmas red_induct = red.induct[split_format (complete)]
abbreviation reds ::"cmd => state => cmd => state => bool"
("((1〈_,/_〉) ->*/ (1〈_,/_〉))" [0,0,0,0] 81) where
"〈c,s〉 ->* 〈c',s'〉 == red⇧*⇧* (c,s) (c',s')"
subsection{* Label Semantics *}
inductive step :: "cmd => cmd => state => nat => cmd => state => nat => bool"
("(_ \<turnstile> (1〈_,/_,/_〉) \<leadsto>/ (1〈_,/_,/_〉))" [51,0,0,0,0,0,0] 81)
where
StepLAss:
"V:=e \<turnstile> 〈V:=e,s,0〉 \<leadsto> 〈Skip,s(V:=(interpret e s)),1〉"
| StepSeq:
"[|labels (c⇣1;;c⇣2) l (Skip;;c⇣2); labels (c⇣1;;c⇣2) #:c⇣1 c⇣2; l < #:c⇣1|]
==> c⇣1;;c⇣2 \<turnstile> 〈Skip;;c⇣2,s,l〉 \<leadsto> 〈c⇣2,s,#:c⇣1〉"
| StepSeqWhile:
"labels (while (b) c') l (Skip;;while (b) c')
==> while (b) c' \<turnstile> 〈Skip;;while (b) c',s,l〉 \<leadsto> 〈while (b) c',s,0〉"
| StepCondTrue:
"interpret b s = Some true
==> if (b) c⇣1 else c⇣2 \<turnstile> 〈if (b) c⇣1 else c⇣2,s,0〉 \<leadsto> 〈c⇣1,s,1〉"
| StepCondFalse:
"interpret b s = Some false
==> if (b) c⇣1 else c⇣2 \<turnstile> 〈if (b) c⇣1 else c⇣2,s,0〉 \<leadsto> 〈c⇣2,s,#:c⇣1 + 1〉"
| StepWhileTrue:
"interpret b s = Some true
==> while (b) c \<turnstile> 〈while (b) c,s,0〉 \<leadsto> 〈c;;while (b) c,s,2〉"
| StepWhileFalse:
"interpret b s = Some false ==> while (b) c \<turnstile> 〈while (b) c,s,0〉 \<leadsto> 〈Skip,s,1〉"
| StepRecSeq1:
"prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉
==> prog;;c⇣2 \<turnstile> 〈c;;c⇣2,s,l〉 \<leadsto> 〈c';;c⇣2,s',l'〉"
| StepRecSeq2:
"prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉
==> c⇣1;;prog \<turnstile> 〈c,s,l + #:c⇣1〉 \<leadsto> 〈c',s',l' + #:c⇣1〉"
| StepRecCond1:
"prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉
==> if (b) prog else c⇣2 \<turnstile> 〈c,s,l + 1〉 \<leadsto> 〈c',s',l' + 1〉"
| StepRecCond2:
"prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉
==> if (b) c⇣1 else prog \<turnstile> 〈c,s,l + #:c⇣1 + 1〉 \<leadsto> 〈c',s',l' + #:c⇣1 + 1〉"
| StepRecWhile:
"cx \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉
==> while (b) cx \<turnstile> 〈c;;while (b) cx,s,l + 2〉 \<leadsto> 〈c';;while (b) cx,s',l' + 2〉"
lemma step_label_less:
"prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉 ==> l < #:prog ∧ l' < #:prog"
proof(induct rule:step.induct)
case (StepSeq c⇣1 c⇣2 l s)
from `labels (c⇣1;;c⇣2) l (Skip;;c⇣2)`
have "l < #:(c⇣1;; c⇣2)" by(rule label_less_num_inner_nodes)
thus ?case by(simp add:num_inner_nodes_gr_0)
next
case (StepSeqWhile b cx l s)
from `labels (while (b) cx) l (Skip;;while (b) cx)`
have "l < #:(while (b) cx)" by(rule label_less_num_inner_nodes)
thus ?case by simp
qed (auto intro:num_inner_nodes_gr_0)
abbreviation steps :: "cmd => cmd => state => nat => cmd => state => nat => bool"
("(_ \<turnstile> (1〈_,/_,/_〉) \<leadsto>*/ (1〈_,/_,/_〉))" [51,0,0,0,0,0,0] 81) where
"prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉 ==
(λ(c,s,l) (c',s',l'). prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉)⇧*⇧* (c,s,l) (c',s',l')"
subsection{* Proof of bisimulation of @{term "〈c,s〉 -> 〈c',s'〉"}\\
and @{term "prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉"} via @{term "labels"} *}
lemmas converse_rtranclp_induct3 =
converse_rtranclp_induct[of _ "(ax,ay,az)" "(bx,by,bz)", split_rule,
consumes 1, case_names refl step]
subsubsection {* From @{term "prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉"} to
@{term "〈c,s〉 -> 〈c',s'〉"} *}
lemma step_red:
"prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉 ==> 〈c,s〉 -> 〈c',s'〉"
by(induct rule:step.induct,rule RedLAss,auto intro:red.intros)
lemma steps_reds:
"prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉 ==> 〈c,s〉 ->* 〈c',s'〉"
proof(induct rule:converse_rtranclp_induct3)
case refl thus ?case by simp
next
case (step c s l c'' s'' l'')
then have "prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c'',s'',l''〉"
and "〈c'',s''〉 ->* 〈c',s'〉" by simp_all
from `prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c'',s'',l''〉` have "〈c,s〉 -> 〈c'',s''〉"
by(fastforce intro:step_red)
with `〈c'',s''〉 ->* 〈c',s'〉` show ?case
by(fastforce intro:converse_rtranclp_into_rtranclp)
qed
declare fun_upd_apply [simp del] One_nat_def [simp del]
subsubsection {* From @{term "〈c,s〉 -> 〈c',s'〉"} and @{term labels} to
@{term "prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉"} *}
lemma red_step:
"[|labels prog l c; 〈c,s〉 -> 〈c',s'〉|]
==> ∃l'. prog \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉 ∧ labels prog l' c'"
proof(induct arbitrary:c' rule:labels.induct)
case (Labels_Base c)
from `〈c,s〉 -> 〈c',s'〉` show ?case
proof(induct rule:red_induct)
case (RedLAss V e s)
have "V:=e \<turnstile> 〈V:=e,s,0〉 \<leadsto> 〈Skip,s(V:=(interpret e s)),1〉" by(rule StepLAss)
have "labels (V:=e) 1 Skip" by(fastforce intro:Labels_LAss)
with `V:=e \<turnstile> 〈V:=e,s,0〉 \<leadsto> 〈Skip,s(V:=(interpret e s)),1〉` show ?case by blast
next
case (SeqRed c⇣1 s c⇣1' s' c⇣2)
from `∃l'. c⇣1 \<turnstile> 〈c⇣1,s,0〉 \<leadsto> 〈c⇣1',s',l'〉 ∧ labels c⇣1 l' c⇣1'`
obtain l' where "c⇣1 \<turnstile> 〈c⇣1,s,0〉 \<leadsto> 〈c⇣1',s',l'〉" and "labels c⇣1 l' c⇣1'" by blast
from `c⇣1 \<turnstile> 〈c⇣1,s,0〉 \<leadsto> 〈c⇣1',s',l'〉` have "c⇣1;;c⇣2 \<turnstile> 〈c⇣1;;c⇣2,s,0〉 \<leadsto> 〈c⇣1';;c⇣2,s',l'〉"
by(rule StepRecSeq1)
moreover
from `labels c⇣1 l' c⇣1'` have "labels (c⇣1;;c⇣2) l' (c⇣1';;c⇣2)" by(rule Labels_Seq1)
ultimately show ?case by blast
next
case (RedSeq c⇣2 s)
have "labels c⇣2 0 c⇣2" by(rule Labels.Labels_Base)
hence "labels (Skip;;c⇣2) (0 + #:Skip) c⇣2" by(rule Labels_Seq2)
have "labels (Skip;;c⇣2) 0 (Skip;;c⇣2)" by(rule Labels.Labels_Base)
with `labels (Skip;;c⇣2) (0 + #:Skip) c⇣2`
have "Skip;;c⇣2 \<turnstile> 〈Skip;;c⇣2,s,0〉 \<leadsto> 〈c⇣2,s,#:Skip〉"
by(fastforce intro:StepSeq)
with `labels (Skip;;c⇣2) (0 + #:Skip) c⇣2` show ?case by auto
next
case (RedCondTrue b s c⇣1 c⇣2)
from `interpret b s = Some true`
have "if (b) c⇣1 else c⇣2 \<turnstile> 〈if (b) c⇣1 else c⇣2,s,0〉 \<leadsto> 〈c⇣1,s,1〉"
by(rule StepCondTrue)
have "labels (if (b) c⇣1 else c⇣2) (0 + 1) c⇣1"
by(rule Labels_CondTrue,rule Labels.Labels_Base)
with `if (b) c⇣1 else c⇣2 \<turnstile> 〈if (b) c⇣1 else c⇣2,s,0〉 \<leadsto> 〈c⇣1,s,1〉` show ?case by auto
next
case (RedCondFalse b s c⇣1 c⇣2)
from `interpret b s = Some false`
have "if (b) c⇣1 else c⇣2 \<turnstile> 〈if (b) c⇣1 else c⇣2,s,0〉 \<leadsto> 〈c⇣2,s,#:c⇣1 + 1〉"
by(rule StepCondFalse)
have "labels (if (b) c⇣1 else c⇣2) (0 + #:c⇣1 + 1) c⇣2"
by(rule Labels_CondFalse,rule Labels.Labels_Base)
with `if (b) c⇣1 else c⇣2 \<turnstile> 〈if (b) c⇣1 else c⇣2,s,0〉 \<leadsto> 〈c⇣2,s,#:c⇣1 + 1〉`
show ?case by auto
next
case (RedWhileTrue b s c)
from `interpret b s = Some true`
have "while (b) c \<turnstile> 〈while (b) c,s,0〉 \<leadsto> 〈c;; while (b) c,s,2〉"
by(rule StepWhileTrue)
have "labels (while (b) c) (0 + 2) (c;; while (b) c)"
by(rule Labels_WhileBody,rule Labels.Labels_Base)
with `while (b) c \<turnstile> 〈while (b) c,s,0〉 \<leadsto> 〈c;; while (b) c,s,2〉`
show ?case by(auto simp del:add_2_eq_Suc')
next
case (RedWhileFalse b s c)
from `interpret b s = Some false`
have "while (b) c \<turnstile> 〈while (b) c,s,0〉 \<leadsto> 〈Skip,s,1〉"
by(rule StepWhileFalse)
have "labels (while (b) c) 1 Skip" by(rule Labels_WhileExit)
with `while (b) c \<turnstile> 〈while (b) c,s,0〉 \<leadsto> 〈Skip,s,1〉` show ?case by auto
qed
next
case (Labels_LAss V e)
from `〈Skip,s〉 -> 〈c',s'〉` have False by(auto elim:red.cases)
thus ?case by simp
next
case (Labels_Seq1 c⇣1 l c c⇣2)
note IH = `!!c'. 〈c,s〉 -> 〈c',s'〉 ==>
∃l'. c⇣1 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉 ∧ labels c⇣1 l' c'`
from `〈c;;c⇣2,s〉 -> 〈c',s'〉`
have "(c = Skip ∧ c' = c⇣2 ∧ s = s') ∨ (∃c''. c' = c'';;c⇣2)"
by -(erule red.cases,auto)
thus ?case
proof
assume [simp]:"c = Skip ∧ c' = c⇣2 ∧ s = s'"
from `labels c⇣1 l c` have "l < #:c⇣1"
by(rule label_less_num_inner_nodes[simplified])
have "labels (c⇣1;;c⇣2) (0 + #:c⇣1) c⇣2"
by(rule Labels_Seq2,rule Labels_Base)
from `labels c⇣1 l c` have "labels (c⇣1;; c⇣2) l (Skip;;c⇣2)"
by(fastforce intro:Labels.Labels_Seq1)
with `labels (c⇣1;;c⇣2) (0 + #:c⇣1) c⇣2` `l < #:c⇣1`
have "c⇣1;; c⇣2 \<turnstile> 〈Skip;;c⇣2,s,l〉 \<leadsto> 〈c⇣2,s,#:c⇣1〉"
by(fastforce intro:StepSeq)
with `labels (c⇣1;;c⇣2) (0 + #:c⇣1) c⇣2` show ?case by auto
next
assume "∃c''. c' = c'';;c⇣2"
then obtain c'' where [simp]:"c' = c'';;c⇣2" by blast
with `〈c;;c⇣2,s〉 -> 〈c',s'〉` have "〈c,s〉 -> 〈c'',s'〉"
by(auto elim!:red.cases,induct c⇣2,auto)
from IH[OF this] obtain l' where "c⇣1 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c'',s',l'〉"
and "labels c⇣1 l' c''" by blast
from `c⇣1 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c'',s',l'〉` have "c⇣1;;c⇣2 \<turnstile> 〈c;;c⇣2,s,l〉 \<leadsto> 〈c'';;c⇣2,s',l'〉"
by(rule StepRecSeq1)
from `labels c⇣1 l' c''` have "labels (c⇣1;;c⇣2) l' (c'';;c⇣2)"
by(rule Labels.Labels_Seq1)
with `c⇣1;;c⇣2 \<turnstile> 〈c;;c⇣2,s,l〉 \<leadsto> 〈c'';;c⇣2,s',l'〉` show ?case by auto
qed
next
case (Labels_Seq2 c⇣2 l c c⇣1 c')
note IH = `!!c'. 〈c,s〉 -> 〈c',s'〉 ==>
∃l'. c⇣2 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉 ∧ labels c⇣2 l' c'`
from IH[OF `〈c,s〉 -> 〈c',s'〉`] obtain l' where "c⇣2 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉"
and "labels c⇣2 l' c'" by blast
from `c⇣2 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉` have "c⇣1;; c⇣2 \<turnstile> 〈c,s,l + #:c⇣1〉 \<leadsto> 〈c',s',l' + #:c⇣1〉"
by(rule StepRecSeq2)
moreover
from `labels c⇣2 l' c'` have "labels (c⇣1;;c⇣2) (l' + #:c⇣1) c'"
by(rule Labels.Labels_Seq2)
ultimately show ?case by blast
next
case (Labels_CondTrue c⇣1 l c b c⇣2 c')
note label = `labels c⇣1 l c` and red = `〈c,s〉 -> 〈c',s'〉`
and IH = `!!c'. 〈c,s〉 -> 〈c',s'〉 ==>
∃l'. c⇣1 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉 ∧ labels c⇣1 l' c'`
from IH[OF `〈c,s〉 -> 〈c',s'〉`] obtain l' where "c⇣1 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉"
and "labels c⇣1 l' c'" by blast
from `c⇣1 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉`
have "if (b) c⇣1 else c⇣2 \<turnstile> 〈c,s,l + 1〉 \<leadsto> 〈c',s',l' + 1〉"
by(rule StepRecCond1)
moreover
from `labels c⇣1 l' c'` have "labels (if (b) c⇣1 else c⇣2) (l' + 1) c'"
by(rule Labels.Labels_CondTrue)
ultimately show ?case by blast
next
case (Labels_CondFalse c⇣2 l c b c⇣1 c')
note IH = `!!c'. 〈c,s〉 -> 〈c',s'〉 ==>
∃l'. c⇣2 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉 ∧ labels c⇣2 l' c'`
from IH[OF `〈c,s〉 -> 〈c',s'〉`] obtain l' where "c⇣2 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉"
and "labels c⇣2 l' c'" by blast
from `c⇣2 \<turnstile> 〈c,s,l〉 \<leadsto> 〈c',s',l'〉`
have "if (b) c⇣1 else c⇣2 \<turnstile> 〈c,s,l + #:c⇣1 + 1〉 \<leadsto> 〈c',s',l' + #:c⇣1 + 1〉"
by(rule StepRecCond2)
moreover
from `labels c⇣2 l' c'` have "labels (if (b) c⇣1 else c⇣2) (l' + #:c⇣1 + 1) c'"
by(rule Labels.Labels_CondFalse)
ultimately show ?case by blast
next
case (Labels_WhileBody c' l c b cx)
note IH = `!!c''. 〈c,s〉 -> 〈c'',s'〉 ==>
∃l'. c' \<turnstile> 〈c,s,l〉 \<leadsto> 〈c'',s',l'〉 ∧ labels c' l' c''`
from `〈c;;while (b) c',s〉 -> 〈cx,s'〉`
have "(c = Skip ∧ cx = while (b) c' ∧ s = s') ∨ (∃c''. cx = c'';;while (b) c')"
by -(erule red.cases,auto)
thus ?case
proof
assume [simp]:"c = Skip ∧ cx = while (b) c' ∧ s = s'"
have "labels (while (b) c') 0 (while (b) c')"
by(fastforce intro:Labels_Base)
from `labels c' l c` have "labels (while (b) c') (l + 2) (Skip;;while (b) c')"
by(fastforce intro:Labels.Labels_WhileBody simp del:add_2_eq_Suc')
hence "while (b) c' \<turnstile> 〈Skip;;while (b) c',s,l + 2〉 \<leadsto> 〈while (b) c',s,0〉"
by(rule StepSeqWhile)
with `labels (while (b) c') 0 (while (b) c')` show ?case by simp blast
next
assume "∃c''. cx = c'';;while (b) c'"
then obtain c'' where [simp]:"cx = c'';;while (b) c'" by blast
with `〈c;;while (b) c',s〉 -> 〈cx,s'〉` have "〈c,s〉 -> 〈c'',s'〉"
by(auto elim:red.cases)
from IH[OF this] obtain l' where "c' \<turnstile> 〈c,s,l〉 \<leadsto> 〈c'',s',l'〉"
and "labels c' l' c''" by blast
from `c' \<turnstile> 〈c,s,l〉 \<leadsto> 〈c'',s',l'〉`
have "while (b) c' \<turnstile> 〈c;;while (b) c',s,l + 2〉 \<leadsto> 〈c'';;while (b) c',s',l' + 2〉"
by(rule StepRecWhile)
moreover
from `labels c' l' c''` have "labels (while (b) c') (l' + 2) (c'';;while (b) c')"
by(rule Labels.Labels_WhileBody)
ultimately show ?case by simp blast
qed
next
case (Labels_WhileExit b c' c'')
from `〈Skip,s〉 -> 〈c'',s'〉` have False by(auto elim:red.cases)
thus ?case by simp
qed
lemma reds_steps:
"[|〈c,s〉 ->* 〈c',s'〉; labels prog l c|]
==> ∃l'. prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉 ∧ labels prog l' c'"
proof(induct rule:rtranclp_induct2)
case refl
from `labels prog l c` show ?case by blast
next
case (step c'' s'' c' s')
note IH = `labels prog l c ==>
∃l'. prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c'',s'',l'〉 ∧ labels prog l' c''`
from IH[OF `labels prog l c`] obtain l'' where "prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c'',s'',l''〉"
and "labels prog l'' c''" by blast
from `labels prog l'' c''` `〈c'',s''〉 -> 〈c',s'〉` obtain l'
where "prog \<turnstile> 〈c'',s'',l''〉 \<leadsto> 〈c',s',l'〉"
and "labels prog l' c'" by(auto dest:red_step)
from `prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c'',s'',l''〉` `prog \<turnstile> 〈c'',s'',l''〉 \<leadsto> 〈c',s',l'〉`
have "prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉"
by(fastforce elim:rtranclp_trans)
with `labels prog l' c'` show ?case by blast
qed
subsubsection {* The bisimulation theorem *}
theorem reds_steps_bisimulation:
"labels prog l c ==> (〈c,s〉 ->* 〈c',s'〉) =
(∃l'. prog \<turnstile> 〈c,s,l〉 \<leadsto>* 〈c',s',l'〉 ∧ labels prog l' c')"
by(fastforce intro:reds_steps elim:steps_reds)
end