Theory JVMInterpretation

Up to index of Isabelle/HOL/Jinja/Slicing

theory JVMInterpretation
imports JVMCFG CFGExit
theory JVMInterpretation imports JVMCFG "../Basic/CFGExit" begin

text {*
\isaheader{Instatiation of the @{text CFG} locale}
*}


abbreviation sourcenode :: "j_edge => j_node"
where "sourcenode e ≡ fst e"

abbreviation targetnode :: "j_edge => j_node"
where "targetnode e ≡ snd(snd e)"

abbreviation kind :: "j_edge => state edge_kind"
where "kind e ≡ fst(snd e)"

text {*
The following predicates define the aforementioned well-formedness requirements
for nodes. Later, @{text "valid_callstack"} will be implied by Jinja's state conformance.
*}


fun valid_callstack :: "jvmprog => callstack => bool"
where
"valid_callstack prog [] = True"
| "valid_callstack (P, C0, Main) [(C, M, pc)] <->
C = C0 ∧ M = Main ∧
(PΦ) C M ! pc ≠ None ∧
(∃T Ts mxs mxl is xt. (Pwf) \<turnstile> C sees M:Ts->T=(mxs, mxl, is, xt) in C ∧ pc < length is)"

| "valid_callstack (P, C0, Main) ((C, M, pc)#(C', M', pc')#cs) <->
instrs_of (Pwf) C' M' ! pc' =
Invoke M (locLength P C M 0 - Suc (fst(snd(snd(snd(snd(method (Pwf) C M)))))) ) ∧
(PΦ) C M ! pc ≠ None ∧
(∃T Ts mxs mxl is xt. (Pwf) \<turnstile> C sees M:Ts->T=(mxs, mxl, is, xt) in C ∧ pc < length is) ∧
valid_callstack (P, C0, Main) ((C', M', pc')#cs)"


fun valid_node :: "jvmprog => j_node => bool"
where
"valid_node prog (_Entry_) = True"
(* | "valid_node prog (_Exit_) = True" *)
| "valid_node prog (_ cs,None _) <-> valid_callstack prog cs"
| "valid_node prog (_ cs,⌊(cs', xf)⌋ _) <->
valid_callstack prog cs ∧ valid_callstack prog cs' ∧
(∃Q. prog \<turnstile> (_ cs,None _) -(Q)\<surd>-> (_ cs,⌊(cs', xf)⌋ _)) ∧
(∃f. prog \<turnstile> (_ cs,⌊(cs', xf)⌋ _) -\<Up>f-> (_ cs',None _))"


fun valid_edge :: "jvmprog => j_edge => bool"
where
"valid_edge prog a <->
(prog \<turnstile> (sourcenode a) -(kind a)-> (targetnode a))
∧ (valid_node prog (sourcenode a))
∧ (valid_node prog (targetnode a))"


interpretation JVM_CFG_Interpret:
CFG "sourcenode" "targetnode" "kind" "valid_edge prog" "Entry"
for prog
proof (unfold_locales)
fix a
assume ve: "valid_edge prog a"
and trg: "targetnode a = (_Entry_)"
obtain n et n'
where "a = (n,et,n')"
by (cases a) fastforce
with ve trg
have "prog \<turnstile> n -et-> (_Entry_)" by simp
thus False by fastforce
next
fix a a'
assume valid: "valid_edge prog a"
and valid': "valid_edge prog a'"
and sourceeq: "sourcenode a = sourcenode a'"
and targeteq: "targetnode a = targetnode a'"
obtain n1 et n2
where a:"a = (n1, et, n2)"
by (cases a) fastforce
obtain n1' et' n2'
where a':"a' = (n1', et', n2')"
by (cases a') fastforce
from a valid a' valid' sourceeq targeteq
have "et = et'"
by (fastforce elim: JVMCFG_edge_det)
with a a' sourceeq targeteq
show "a = a'"
by simp
qed


interpretation JVM_CFGExit_Interpret:
CFGExit "sourcenode" "targetnode" "kind" "valid_edge prog" "Entry" "(_Exit_)"
for prog
proof(unfold_locales)
fix a
assume ve: "valid_edge prog a"
and src: "sourcenode a = (_Exit_)"
obtain n et n'
where "a = (n,et,n')"
by (cases a) fastforce
with ve src
have "prog \<turnstile> (_Exit_) -et-> n'" by simp
thus False by fastforce
next
have "prog \<turnstile> (_Entry_) -(λs. False)\<surd>-> (_Exit_)"
by (rule JCFG_EntryExit)
thus "∃a. valid_edge prog a ∧ sourcenode a = (_Entry_) ∧
targetnode a = (_Exit_) ∧ kind a = (λs. False)\<surd>"

by fastforce
qed

end