Theory Progress

Up to index of Isabelle/HOL/Jinja

theory Progress
imports Equivalence WellTypeRT DefAss Conform
(*  Title:      Jinja/J/SmallProgress.thy

Author: Tobias Nipkow
Copyright 2003 Technische Universitaet Muenchen
*)


header {* \isaheader{Progress of Small Step Semantics} *}

theory Progress
imports Equivalence WellTypeRT DefAss "../Common/Conform"
begin

lemma final_addrE:
"[| P,E,h \<turnstile> e : Class C; final e;
!!a. e = addr a ==> R;
!!a. e = Throw a ==> R |] ==> R"

(*<*)by(auto simp:final_def)(*>*)


lemma finalRefE:
"[| P,E,h \<turnstile> e : T; is_refT T; final e;
e = null ==> R;
!!a C. [| e = addr a; T = Class C |] ==> R;
!!a. e = Throw a ==> R |] ==> R"

(*<*)by(auto simp:final_def is_refT_def)(*>*)


text{* Derivation of new induction scheme for well typing: *}

inductive
WTrt' :: "[J_prog,heap,env,expr,ty] => bool"
and WTrts' :: "[J_prog,heap,env,expr list, ty list] => bool"
and WTrt2' :: "[J_prog,env,heap,expr,ty] => bool"
("_,_,_ \<turnstile> _ :' _" [51,51,51]50)
and WTrts2' :: "[J_prog,env,heap,expr list, ty list] => bool"
("_,_,_ \<turnstile> _ [:''] _" [51,51,51]50)
for P :: J_prog and h :: heap
where
"P,E,h \<turnstile> e :' T ≡ WTrt' P h E e T"
| "P,E,h \<turnstile> es [:'] Ts ≡ WTrts' P h E es Ts"

| "is_class P C ==> P,E,h \<turnstile> new C :' Class C"
| "[| P,E,h \<turnstile> e :' T; is_refT T; is_class P C |]
==> P,E,h \<turnstile> Cast C e :' Class C"

| "typeofh v = Some T ==> P,E,h \<turnstile> Val v :' T"
| "E v = Some T ==> P,E,h \<turnstile> Var v :' T"
| "[| P,E,h \<turnstile> e1 :' T1; P,E,h \<turnstile> e2 :' T2 |]
==> P,E,h \<turnstile> e1 «Eq» e2 :' Boolean"

| "[| P,E,h \<turnstile> e1 :' Integer; P,E,h \<turnstile> e2 :' Integer |]
==> P,E,h \<turnstile> e1 «Add» e2 :' Integer"

| "[| P,E,h \<turnstile> Var V :' T; P,E,h \<turnstile> e :' T'; P \<turnstile> T' ≤ T (* V ≠ This*) |]
==> P,E,h \<turnstile> V:=e :' Void"

| "[| P,E,h \<turnstile> e :' Class C; P \<turnstile> C has F:T in D |] ==> P,E,h \<turnstile> e•F{D} :' T"
| "P,E,h \<turnstile> e :' NT ==> P,E,h \<turnstile> e•F{D} :' T"
| "[| P,E,h \<turnstile> e1 :' Class C; P \<turnstile> C has F:T in D;
P,E,h \<turnstile> e2 :' T2; P \<turnstile> T2 ≤ T |]
==> P,E,h \<turnstile> e1•F{D}:=e2 :' Void"

| "[| P,E,h \<turnstile> e1:'NT; P,E,h \<turnstile> e2 :' T2 |] ==> P,E,h \<turnstile> e1•F{D}:=e2 :' Void"
| "[| P,E,h \<turnstile> e :' Class C; P \<turnstile> C sees M:Ts -> T = (pns,body) in D;
P,E,h \<turnstile> es [:'] Ts'; P \<turnstile> Ts' [≤] Ts |]
==> P,E,h \<turnstile> e•M(es) :' T"

| "[| P,E,h \<turnstile> e :' NT; P,E,h \<turnstile> es [:'] Ts |] ==> P,E,h \<turnstile> e•M(es) :' T"
| "P,E,h \<turnstile> [] [:'] []"
| "[| P,E,h \<turnstile> e :' T; P,E,h \<turnstile> es [:'] Ts |] ==> P,E,h \<turnstile> e#es [:'] T#Ts"
| "[| typeofh v = Some T1; P \<turnstile> T1 ≤ T; P,E(V\<mapsto>T),h \<turnstile> e2 :' T2 |]
==> P,E,h \<turnstile> {V:T := Val v; e2} :' T2"

| "[| P,E(V\<mapsto>T),h \<turnstile> e :' T'; ¬ assigned V e |] ==> P,E,h \<turnstile> {V:T; e} :' T'"
| "[| P,E,h \<turnstile> e1:' T1; P,E,h \<turnstile> e2:'T2 |] ==> P,E,h \<turnstile> e1;;e2 :' T2"
| "[| P,E,h \<turnstile> e :' Boolean; P,E,h \<turnstile> e1:' T1; P,E,h \<turnstile> e2:' T2;
P \<turnstile> T1 ≤ T2 ∨ P \<turnstile> T2 ≤ T1;
P \<turnstile> T1 ≤ T2 --> T = T2; P \<turnstile> T2 ≤ T1 --> T = T1 |]
==> P,E,h \<turnstile> if (e) e1 else e2 :' T"

(*
"[| P,E,h \<turnstile> e :' Boolean; P,E,h \<turnstile> e1:' T1; P,E,h \<turnstile> e2:' T2; P \<turnstile> T1 ≤ T2 |]
==> P,E,h \<turnstile> if (e) e1 else e2 :' T2"
"[| P,E,h \<turnstile> e :' Boolean; P,E,h \<turnstile> e1:' T1; P,E,h \<turnstile> e2:' T2; P \<turnstile> T2 ≤ T1 |]
==> P,E,h \<turnstile> if (e) e1 else e2 :' T1"
*)

| "[| P,E,h \<turnstile> e :' Boolean; P,E,h \<turnstile> c:' T |]
==> P,E,h \<turnstile> while(e) c :' Void"

| "[| P,E,h \<turnstile> e :' Tr; is_refT Tr |] ==> P,E,h \<turnstile> throw e :' T"
| "[| P,E,h \<turnstile> e1 :' T1; P,E(V \<mapsto> Class C),h \<turnstile> e2 :' T2; P \<turnstile> T1 ≤ T2 |]
==> P,E,h \<turnstile> try e1 catch(C V) e2 :' T2"


(*<*)
lemmas WTrt'_induct = WTrt'_WTrts'.induct [split_format (complete)]
and WTrt'_inducts = WTrt'_WTrts'.inducts [split_format (complete)]

inductive_cases WTrt'_elim_cases[elim!]:
"P,E,h \<turnstile> V :=e :' T"
(*>*)

lemma [iff]: "P,E,h \<turnstile> e1;;e2 :' T2 = (∃T1. P,E,h \<turnstile> e1:' T1 ∧ P,E,h \<turnstile> e2:' T2)"
(*<*)
apply(rule iffI)
apply (auto elim: WTrt'.cases intro!:WTrt'_WTrts'.intros)
done
(*>*)

lemma [iff]: "P,E,h \<turnstile> Val v :' T = (typeofh v = Some T)"
(*<*)
apply(rule iffI)
apply (auto elim: WTrt'.cases intro!:WTrt'_WTrts'.intros)
done
(*>*)

lemma [iff]: "P,E,h \<turnstile> Var v :' T = (E v = Some T)"
(*<*)
apply(rule iffI)
apply (auto elim: WTrt'.cases intro!:WTrt'_WTrts'.intros)
done
(*>*)


lemma wt_wt': "P,E,h \<turnstile> e : T ==> P,E,h \<turnstile> e :' T"
and wts_wts': "P,E,h \<turnstile> es [:] Ts ==> P,E,h \<turnstile> es [:'] Ts"
(*<*)
apply (induct rule:WTrt_inducts)
prefer 14
apply(case_tac "assigned V e")
apply(clarsimp simp add:fun_upd_same assigned_def simp del:fun_upd_apply)
apply(erule (2) WTrt'_WTrts'.intros)
apply(erule (1) WTrt'_WTrts'.intros)
apply(blast intro:WTrt'_WTrts'.intros)+
done
(*>*)


lemma wt'_wt: "P,E,h \<turnstile> e :' T ==> P,E,h \<turnstile> e : T"
and wts'_wts: "P,E,h \<turnstile> es [:'] Ts ==> P,E,h \<turnstile> es [:] Ts"
(*<*)
apply (induct rule:WTrt'_inducts)
prefer 16
apply(rule WTrt_WTrts.intros)
apply(rule WTrt_WTrts.intros)
apply(rule WTrt_WTrts.intros)
apply simp
apply(erule (2) WTrt_WTrts.intros)
apply(blast intro:WTrt_WTrts.intros)+
done
(*>*)


corollary wt'_iff_wt: "(P,E,h \<turnstile> e :' T) = (P,E,h \<turnstile> e : T)"
(*<*)by(blast intro:wt_wt' wt'_wt)(*>*)


corollary wts'_iff_wts: "(P,E,h \<turnstile> es [:'] Ts) = (P,E,h \<turnstile> es [:] Ts)"
(*<*)by(blast intro:wts_wts' wts'_wts)(*>*)

(*<*)
lemmas WTrt_inducts2 = WTrt'_inducts [unfolded wt'_iff_wt wts'_iff_wts,
case_names WTrtNew WTrtCast WTrtVal WTrtVar WTrtBinOpEq WTrtBinOpAdd WTrtLAss WTrtFAcc WTrtFAccNT WTrtFAss
WTrtFAssNT WTrtCall WTrtCallNT WTrtNil WTrtCons WTrtInitBlock WTrtBlock WTrtSeq WTrtCond
WTrtWhile WTrtThrow WTrtTry, consumes 1]
(*>*)

theorem assumes wf: "wwf_J_prog P" and hconf: "P \<turnstile> h \<surd>"
shows progress: "P,E,h \<turnstile> e : T ==>
(!!l. [| \<D> e ⌊dom l⌋; ¬ final e |] ==> ∃e' s'. P \<turnstile> ⟨e,(h,l)⟩ -> ⟨e',s'⟩)"

and "P,E,h \<turnstile> es [:] Ts ==>
(!!l. [| \<D>s es ⌊dom l⌋; ¬ finals es |] ==> ∃es' s'. P \<turnstile> ⟨es,(h,l)⟩ [->] ⟨es',s'⟩)"

(*<*)
proof (induct rule:WTrt_inducts2)
case WTrtNew
show ?case
proof cases
assume "∃a. h a = None"
with assms WTrtNew show ?thesis
by (fastforce del:exE intro!:RedNew simp add:new_Addr_def
elim!:wf_Fields_Ex[THEN exE])
next
assume "¬(∃a. h a = None)"
with assms WTrtNew show ?thesis
by(fastforce intro:RedNewFail simp add:new_Addr_def)
qed
next
case (WTrtCast E e T C)
have wte: "P,E,h \<turnstile> e : T" and ref: "is_refT T"
and IH: "!!l. [|\<D> e ⌊dom l⌋; ¬ final e|]
==> ∃e' s'. P \<turnstile> ⟨e,(h,l)⟩ -> ⟨e',s'⟩"

and D: "\<D> (Cast C e) ⌊dom l⌋" by fact+
from D have De: "\<D> e ⌊dom l⌋" by auto
show ?case
proof cases
assume "final e"
with wte ref show ?thesis
proof (rule finalRefE)
assume "e = null" thus ?case by(fastforce intro:RedCastNull)
next
fix D a assume A: "T = Class D" "e = addr a"
show ?thesis
proof cases
assume "P \<turnstile> D \<preceq>* C"
thus ?thesis using A wte by(fastforce intro:RedCast)
next
assume "¬ P \<turnstile> D \<preceq>* C"
thus ?thesis using A wte by(force intro!:RedCastFail)
qed
next
fix a assume "e = Throw a"
thus ?thesis by(blast intro!:red_reds.CastThrow)
qed
next
assume nf: "¬ final e"
from IH[OF De nf] show ?thesis by (blast intro:CastRed)
qed
next
case WTrtVal thus ?case by(simp add:final_def)
next
case WTrtVar thus ?case by(fastforce intro:RedVar simp:hyper_isin_def)
next
case (WTrtBinOpEq E e1 T1 e2 T2)
show ?case
proof cases
assume "final e1"
thus ?thesis
proof (rule finalE)
fix v1 assume [simp]: "e1 = Val v1"
show ?thesis
proof cases
assume "final e2"
thus ?thesis
proof (rule finalE)
fix v2 assume "e2 = Val v2"
thus ?thesis using WTrtBinOpEq by(fastforce intro:RedBinOp)
next
fix a assume "e2 = Throw a"
thus ?thesis by(auto intro:red_reds.BinOpThrow2)
qed
next
assume "¬ final e2" with WTrtBinOpEq show ?thesis
by simp (fast intro!:BinOpRed2)
qed
next
fix a assume "e1 = Throw a"
thus ?thesis by simp (fast intro:red_reds.BinOpThrow1)
qed
next
assume "¬ final e1" with WTrtBinOpEq show ?thesis
by simp (fast intro:BinOpRed1)
qed
next
case (WTrtBinOpAdd E e1 e2)
show ?case
proof cases
assume "final e1"
thus ?thesis
proof (rule finalE)
fix v1 assume [simp]: "e1 = Val v1"
show ?thesis
proof cases
assume "final e2"
thus ?thesis
proof (rule finalE)
fix v2 assume "e2 = Val v2"
thus ?thesis using WTrtBinOpAdd by(fastforce intro:RedBinOp)
next
fix a assume "e2 = Throw a"
thus ?thesis by(auto intro:red_reds.BinOpThrow2)
qed
next
assume "¬ final e2" with WTrtBinOpAdd show ?thesis
by simp (fast intro!:BinOpRed2)
qed
next
fix a assume "e1 = Throw a"
thus ?thesis by simp (fast intro:red_reds.BinOpThrow1)
qed
next
assume "¬ final e1" with WTrtBinOpAdd show ?thesis
by simp (fast intro:BinOpRed1)
qed
next
case (WTrtLAss E V T e T')
show ?case
proof cases
assume "final e" with WTrtLAss show ?thesis
by(auto simp:final_def intro!:RedLAss red_reds.LAssThrow)
next
assume "¬ final e" with WTrtLAss show ?thesis
by simp (fast intro:LAssRed)
qed
next
case (WTrtFAcc E e C F T D)
have wte: "P,E,h \<turnstile> e : Class C"
and field: "P \<turnstile> C has F:T in D" by fact+
show ?case
proof cases
assume "final e"
with wte show ?thesis
proof (rule final_addrE)
fix a assume e: "e = addr a"
with wte obtain fs where hp: "h a = Some(C,fs)" by auto
with hconf have "P,h \<turnstile> (C,fs) \<surd>" using hconf_def by fastforce
then obtain v where "fs(F,D) = Some v" using field
by(fastforce dest:has_fields_fun simp:oconf_def has_field_def)
with hp e show ?thesis by(fastforce intro:RedFAcc)
next
fix a assume "e = Throw a"
thus ?thesis by(fastforce intro:red_reds.FAccThrow)
qed
next
assume "¬ final e" with WTrtFAcc show ?thesis
by(fastforce intro!:FAccRed)
qed
next
case (WTrtFAccNT E e F D T)
show ?case
proof cases
assume "final e" --"@{term e} is @{term null} or @{term throw}"
with WTrtFAccNT show ?thesis
by(fastforce simp:final_def intro: RedFAccNull red_reds.FAccThrow)
next
assume "¬ final e" --"@{term e} reduces by IH"
with WTrtFAccNT show ?thesis by simp (fast intro:FAccRed)
qed
next
case (WTrtFAss E e1 C F T D e2 T2)
have wte1: "P,E,h \<turnstile> e1 : Class C" by fact
show ?case
proof cases
assume "final e1"
with wte1 show ?thesis
proof (rule final_addrE)
fix a assume e1: "e1 = addr a"
show ?thesis
proof cases
assume "final e2"
thus ?thesis
proof (rule finalE)
fix v assume "e2 = Val v"
thus ?thesis using e1 wte1 by(fastforce intro:RedFAss)
next
fix a assume "e2 = Throw a"
thus ?thesis using e1 by(fastforce intro:red_reds.FAssThrow2)
qed
next
assume "¬ final e2" with WTrtFAss e1 show ?thesis
by simp (fast intro!:FAssRed2)
qed
next
fix a assume "e1 = Throw a"
thus ?thesis by(fastforce intro:red_reds.FAssThrow1)
qed
next
assume "¬ final e1" with WTrtFAss show ?thesis
by simp (blast intro!:FAssRed1)
qed
next
case (WTrtFAssNT E e1 e2 T2 F D)
show ?case
proof cases
assume e1: "final e1" --"@{term e1} is @{term null} or @{term throw}"
show ?thesis
proof cases
assume "final e2" --"@{term e2} is @{term Val} or @{term throw}"
with WTrtFAssNT e1 show ?thesis
by(fastforce simp:final_def intro: RedFAssNull red_reds.FAssThrow1 red_reds.FAssThrow2)
next
assume "¬ final e2" --"@{term e2} reduces by IH"
with WTrtFAssNT e1 show ?thesis
by (fastforce simp:final_def intro!:red_reds.FAssRed2 red_reds.FAssThrow1)
qed
next
assume "¬ final e1" --"@{term e1} reduces by IH"
with WTrtFAssNT show ?thesis by (fastforce intro:FAssRed1)
qed
next
case (WTrtCall E e C M Ts T pns body D es Ts')
have wte: "P,E,h \<turnstile> e : Class C"
and method: "P \<turnstile> C sees M:Ts->T = (pns,body) in D"
and wtes: "P,E,h \<turnstile> es [:] Ts'"and sub: "P \<turnstile> Ts' [≤] Ts"
and IHes: "!!l.
[|\<D>s es ⌊dom l⌋; ¬ finals es|]
==> ∃es' s'. P \<turnstile> ⟨es,(h,l)⟩ [->] ⟨es',s'⟩"

and D: "\<D> (e•M(es)) ⌊dom l⌋" by fact+
show ?case
proof cases
assume "final e"
with wte show ?thesis
proof (rule final_addrE)
fix a assume e_addr: "e = addr a"
show ?thesis
proof cases
assume es: "∃vs. es = map Val vs"
from wte e_addr obtain fs where ha: "h a = Some(C,fs)" by auto
show ?thesis
using e_addr ha method WTrts_same_length[OF wtes] sub es sees_wf_mdecl[OF wf method]
by (fastforce intro!: RedCall simp:list_all2_def wf_mdecl_def)
next
assume "¬(∃vs. es = map Val vs)"
hence not_all_Val: "¬(∀e ∈ set es. ∃v. e = Val v)"
by(simp add:ex_map_conv)
let ?ves = "takeWhile (λe. ∃v. e = Val v) es"
let ?rest = "dropWhile (λe. ∃v. e = Val v) es"
let ?ex = "hd ?rest" let ?rst = "tl ?rest"
from not_all_Val have nonempty: "?rest ≠ []" by auto
hence es: "es = ?ves @ ?ex # ?rst" by simp
have "∀e ∈ set ?ves. ∃v. e = Val v" by(fastforce dest:set_takeWhileD)
then obtain vs where ves: "?ves = map Val vs"
using ex_map_conv by blast
show ?thesis
proof cases
assume "final ?ex"
moreover from nonempty have "¬(∃v. ?ex = Val v)"
by(auto simp:neq_Nil_conv simp del:dropWhile_eq_Nil_conv)
(simp add:dropWhile_eq_Cons_conv)
ultimately obtain b where ex_Throw: "?ex = Throw b"
by(fast elim!:finalE)
show ?thesis using e_addr es ex_Throw ves
by(fastforce intro:CallThrowParams)
next
assume not_fin: "¬ final ?ex"
have "finals es = finals(?ves @ ?ex # ?rst)" using es
by(rule arg_cong)
also have "… = finals(?ex # ?rst)" using ves by simp
finally have "finals es = finals(?ex # ?rst)" .
hence "¬ finals es" using not_finals_ConsI[OF not_fin] by blast
thus ?thesis using e_addr D IHes by(fastforce intro!:CallParams)
qed
qed
next
fix a assume "e = Throw a"
with WTrtCall.prems show ?thesis by(fast intro!:CallThrowObj)
qed
next
assume "¬ final e"
with WTrtCall show ?thesis by simp (blast intro!:CallObj)
qed
next
case (WTrtCallNT E e es Ts M T)
show ?case
proof cases
assume "final e"
moreover
{ fix v assume e: "e = Val v"
hence "e = null" using WTrtCallNT by simp
have ?case
proof cases
assume "finals es"
moreover
{ fix vs assume "es = map Val vs"
with WTrtCallNT e have ?thesis by(fastforce intro: RedCallNull) }
moreover
{ fix vs a es' assume "es = map Val vs @ Throw a # es'"
with WTrtCallNT e have ?thesis by(fastforce intro: CallThrowParams) }
ultimately show ?thesis by(fastforce simp:finals_def)
next
assume "¬ finals es" --"@{term es} reduces by IH"
with WTrtCallNT e show ?thesis by(fastforce intro: CallParams)
qed
}
moreover
{ fix a assume "e = Throw a"
with WTrtCallNT have ?case by(fastforce intro: CallThrowObj) }
ultimately show ?thesis by(fastforce simp:final_def)
next
assume "¬ final e" --"@{term e} reduces by IH"
with WTrtCallNT show ?thesis by (fastforce intro:CallObj)
qed
next
case WTrtNil thus ?case by simp
next
case (WTrtCons E e T es Ts)
have IHe: "!!l. [|\<D> e ⌊dom l⌋; ¬ final e|]
==> ∃e' s'. P \<turnstile> ⟨e,(h,l)⟩ -> ⟨e',s'⟩"

and IHes: "!!l. [|\<D>s es ⌊dom l⌋; ¬ finals es|]
==> ∃es' s'. P \<turnstile> ⟨es,(h,l)⟩ [->] ⟨es',s'⟩"

and D: "\<D>s (e#es) ⌊dom l⌋" and not_fins: "¬ finals(e # es)" by fact+
have De: "\<D> e ⌊dom l⌋" and Des: "\<D>s es (⌊dom l⌋ \<squnion> \<A> e)"
using D by auto
show ?case
proof cases
assume "final e"
thus ?thesis
proof (rule finalE)
fix v assume e: "e = Val v"
hence Des': "\<D>s es ⌊dom l⌋" using De Des by auto
have not_fins_tl: "¬ finals es" using not_fins e by simp
show ?thesis using e IHes[OF Des' not_fins_tl]
by (blast intro!:ListRed2)
next
fix a assume "e = Throw a"
hence False using not_fins by simp
thus ?thesis ..
qed
next
assume "¬ final e"
with IHe[OF De] show ?thesis by(fast intro!:ListRed1)
qed
next
case (WTrtInitBlock v T1 T E V e2 T2)
have IH2: "!!l. [|\<D> e2 ⌊dom l⌋; ¬ final e2|]
==> ∃e' s'. P \<turnstile> ⟨e2,(h,l)⟩ -> ⟨e',s'⟩"

and D: "\<D> {V:T := Val v; e2} ⌊dom l⌋" by fact+
show ?case
proof cases
assume "final e2"
then show ?thesis
proof (rule finalE)
fix v2 assume "e2 = Val v2"
thus ?thesis by(fast intro:RedInitBlock)
next
fix a assume "e2 = Throw a"
thus ?thesis by(fast intro:red_reds.InitBlockThrow)
qed
next
assume not_fin2: "¬ final e2"
from D have D2: "\<D> e2 ⌊dom(l(V\<mapsto>v))⌋" by (auto simp:hyperset_defs)
from IH2[OF D2 not_fin2]
obtain h' l' e' where red2: "P \<turnstile> ⟨e2,(h, l(V\<mapsto>v))⟩ -> ⟨e',(h', l')⟩"
by auto
from red_lcl_incr[OF red2] have "V ∈ dom l'" by auto
with red2 show ?thesis by(fastforce intro:InitBlockRed)
qed
next
case (WTrtBlock E V T e T')
have IH: "!!l. [|\<D> e ⌊dom l⌋; ¬ final e|]
==> ∃e' s'. P \<turnstile> ⟨e,(h,l)⟩ -> ⟨e',s'⟩"

and unass: "¬ assigned V e" and D: "\<D> {V:T; e} ⌊dom l⌋" by fact+
show ?case
proof cases
assume "final e"
thus ?thesis
proof (rule finalE)
fix v assume "e = Val v" thus ?thesis by(fast intro:RedBlock)
next
fix a assume "e = Throw a"
thus ?thesis by(fast intro:red_reds.BlockThrow)
qed
next
assume not_fin: "¬ final e"
from D have De: "\<D> e ⌊dom(l(V:=None))⌋" by(simp add:hyperset_defs)
from IH[OF De not_fin]
obtain h' l' e' where red: "P \<turnstile> ⟨e,(h,l(V:=None))⟩ -> ⟨e',(h',l')⟩"
by auto
show ?thesis
proof (cases "l' V")
assume "l' V = None"
with red unass show ?thesis by(blast intro: BlockRedNone)
next
fix v assume "l' V = Some v"
with red unass show ?thesis by(blast intro: BlockRedSome)
qed
qed
next
case (WTrtSeq E e1 T1 e2 T2)
show ?case
proof cases
assume "final e1"
thus ?thesis
by(fast elim:finalE intro:RedSeq red_reds.SeqThrow)
next
assume "¬ final e1" with WTrtSeq show ?thesis
by simp (blast intro:SeqRed)
qed
next
case (WTrtCond E e e1 T1 e2 T2 T)
have wt: "P,E,h \<turnstile> e : Boolean" by fact
show ?case
proof cases
assume "final e"
thus ?thesis
proof (rule finalE)
fix v assume val: "e = Val v"
then obtain b where v: "v = Bool b" using wt by auto
show ?thesis
proof (cases b)
case True with val v show ?thesis by(auto intro:RedCondT)
next
case False with val v show ?thesis by(auto intro:RedCondF)
qed
next
fix a assume "e = Throw a"
thus ?thesis by(fast intro:red_reds.CondThrow)
qed
next
assume "¬ final e" with WTrtCond show ?thesis
by simp (fast intro:CondRed)
qed
next
case WTrtWhile show ?case by(fast intro:RedWhile)
next
case (WTrtThrow E e Tr T)
show ?case
proof cases
assume "final e" -- {*Then @{term e} must be @{term throw} or @{term null}*}
with WTrtThrow show ?thesis
by(fastforce simp:final_def is_refT_def
intro:red_reds.ThrowThrow red_reds.RedThrowNull)
next
assume "¬ final e" -- {*Then @{term e} must reduce*}
with WTrtThrow show ?thesis by simp (blast intro:ThrowRed)
qed
next
case (WTrtTry E e1 T1 V C e2 T2)
have wt1: "P,E,h \<turnstile> e1 : T1" by fact
show ?case
proof cases
assume "final e1"
thus ?thesis
proof (rule finalE)
fix v assume "e1 = Val v"
thus ?thesis by(fast intro:RedTry)
next
fix a assume e1_Throw: "e1 = Throw a"
with wt1 obtain D fs where ha: "h a = Some(D,fs)" by fastforce
show ?thesis
proof cases
assume "P \<turnstile> D \<preceq>* C"
with e1_Throw ha show ?thesis by(fastforce intro!:RedTryCatch)
next
assume "¬ P \<turnstile> D \<preceq>* C"
with e1_Throw ha show ?thesis by(force intro!:RedTryFail)
qed
qed
next
assume "¬ final e1"
with WTrtTry show ?thesis by simp (fast intro:TryRed)
qed
qed
(*>*)


end